首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Hydroxybromination of methyl oleate, oleic acid and new sunflower oil (high oleic), in an acetone/water mixture by a one step reaction using N‐bromosuccinimide, was studied. The yield of bromohydrin products from oleic acid, methyl oleate and sunflower oil were 90%, 78% and 40%, respectively. Reaction products were analyzed by 1H and 13C nuclear magnetic resonance spectroscopy, infrared spectroscopy, gas chromatography, and mass spectrometry. The hydrobromide derivative of new sunflower oil was acrylated and polymerized to a new polymer.  相似文献   

2.
    
In the first part of this study, simultaneous addition of bromine and acrylate to the double bonds of castor oil was achieved. In the second part of the study, bromoacrylated castor oil (BACO) was reacted with toluenediisocyanate (TDI), to form a prepolyurethane (BACOP). The prepolyurethanes were reacted with styrene (STY), 2‐hydroxyethyl methacrylate (HEMA), methyl methacrylate (MMA), and 3‐(acryloxy)‐2‐hydroxy propyl methacrylate (AHPMA) free radically, using the acrylate functional group to prepare the simultaneous interpenetrating polymer networks (SINs). 2,2′‐Azobis (isobutyronitrile) (AIBN) was used as the initiator and diethylene glycol dimethacrylate (DEGDMA) was used as the crosslinker. BACO and BACOP were characterized by IR, 1H‐NMR, and 13C‐NMR techniques. Synthesized polymers were characterized by their resistance to chemical reagents, thermogravimetric analysis, and dynamic mechanical thermal analyzer (DMTA). All the polymers decomposed with 6–10% weight loss in a temperature range of 25–240°C. MMA‐type SIN showed the highest Tg (126°C), while STY‐type SINs showed the highest storage modulus (8.6 × 109 Pa) at room temperature, with respect to other synthesized SINs. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2947–2955, 2006  相似文献   

3.
    
In this study, methyl oleate was bromoacrylated in the presence of N‐bromosuccinimide and acrylic acid in one step. Homopolymers and copolymers of bromoacrylated methyl oleate (BAMO) were synthesized by free radical bulk polymerization and photopolymerization techniques. Azobisisobutyronitrile (AIBN) and 2,2‐dimethoxy‐2‐phenyl‐acetophenone were used as initiators. The new monomer BAMO was characterized by FTIR, GC‐MS, 1H, and 13C‐NMR spectroscopy. Styrene (STY), methylmethacrylate (MMA), and vinyl acetate (VA) were used for copolymerization. The polymers synthesized were characterized by FTIR, 1H‐NMR, 13C‐NMR, and differential scanning calorimetry (DSC). Molecular weight and polydispersities of the copolymers were determined by GPC analysis. Ten different feed ratios of the monomers STY and BAMO were used for the calculation of reactivity ratios. The reactivity ratios were determined by the Fineman–Ross and Kelen–Tudos methods using 1H‐NMR spectroscopic data. The reactivity ratios were found to be rsty = 0.891 (Fineman–Ross method), 0.859 (Kelen–Tudos method); rbamo = 0.671 (Fineman–Ross method), 0.524 (Kelen–Tudos method). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2475–2488, 2004  相似文献   

4.
    
Two different approaches to the creation of phosphorus‐containing soybean‐oil copolymers were investigated. First, two phosphorus‐containing styrene (ST) derivatives, diphenyl styryl phosphine oxide and dimethyl‐p‐vinylbenzylphosphonate (STP2), where tested as comonomers in the cationic copolymerization of soybean oil (SOY), ST, and divinylbenzene (DVB), to obtain heterogeneous systems in all cases. To overcome this drawback, the cross‐metathesis reaction of methyl 10‐undecenoate and STP2 was carried out to link the phosphorus moiety to the vegetable‐oil derivative. This second approach permitted the synthesis of a new reactive phosphorus‐containing plant‐oil derivative, which was incorporated into the soybean oil, ST, and DVB system. The cationic copolymerization was investigated, and the structure, thermal stability, and mechanical and flame‐retardant properties of the resulting copolymers were studied. Thermosets with moderate glass‐transition temperatures were obtained; this showed that the cross‐metathesis reaction is a convenient way to produce oil‐compatible monomers able to undergo homogeneous polymerization reactions. The resulting thermosets with 1% phosphorus had limiting oxygen index values about 24.0; this indicated an improvement in the fire‐retardant properties of the soybean‐oil‐based copolymers. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
    
The Ritter reaction of plant oil triglycerides (such as soybean and sunflower oil) with acrylonitrile was used to introduce acrylamide functionality on the triglyceride. Acrylonitrile and triglycerides were reacted in the presence of H2SO4, and acrylamide derivatives were obtained in yields of 45 and 50% for sunflower oil and soybean oil, respectively. Radical initiated copolymerization of the acrylamide derivatives of the triglycerides with styrene produced semirigid polymers. Characterization of new monomers and polymers was done by 1H‐NMR, 13C‐NMR, IR, and MS. The swelling behavior of the crosslinked network polymers was determined in different solvents. Glass transiton temperature (Tg) of the cured resin was also determined by differential scanning calorimeter to be 40°C for soybean based polymer and 30°C for sunflower‐based polymer. Homo‐ and copolymerization behavior of acrylamide derivatives of methyl oleate (MOA) and methyl 10‐undecenoate (MUA) were also investigated. The reactivity ratios of these monomers with respect to styrene were determined by the Fineman–Ross method using 1H‐NMR spectroscopic data. The reactivity ratios were rsty = 1.776; rmoa = 0512 for MOA, and rsty = 1.142; rmua = 0.507 for MUA, respectively. Photopolymerization behaviors of MOA and MUA were also investigated using the photoDSC technique and the rate of polymerization of MUA is higher than that of MOA under the same conditions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2264–2272, 2005  相似文献   

6.
    
Epoxy resin is widely applied in civil aircraft, automobile and electronics products because of its good processing, adhesion, and mechanical properties, but its application is limited due to its easy combustion. Therefore, it is worthwhile to carry out flame-retardant treatment for epoxy resin. In this study, a new bio-based three-source integrated intumescent flame-retardant cyclodextrin phosphate melamine salt (CDPM) was synthesized from β-cyclodextrin, phosphoric acid, and melamine, and it was employed as an additive flame retardant to fabricate CDPM/epoxy resin (CDPM/EP) composites. Thermogravimetric analysis results manifested that CDPM slightly improved the thermal stability of CDPM/EP composites. The CDPM/EP composite containing 10 wt.% CDPM acquired a limiting oxygen index of 32.9% and passed UL94 V-0 rating. Moreover, the peak heat release rate, total heat release, and total smoke production, were respectively decreased by 46.4%, 55.5%, and 61.8% in contrast with neat epoxy resin. These results demonstrated that CDPM/EP could exert excellent flame retardance and smoke suppression performance. Scanning electron microscope and Raman results confirmed that CDPM facilitated the formation of residual char. Moreover, thermogravimetric/infrared results showed that CDPM/EP produced plenty of phosphorus-containing free radicals and nonflammable NH3 during pyrolysis process, which played a good flame retardance effect in gas phase. This study provides a new approach for the design and development of low-cost intumescent bio-based flame retardant for epoxy resin.  相似文献   

7.
    
Intumescent flame retardant consisting of ammonium polyphosphate and melamine, and MgAlZnFe‐CO3 layered double hydroxides (LDHs) prepared by the constant pH coprecipitation method, were added to poly(butylene succinate) (PBS) via melt blending to obtain novel intumescent flame retardant poly(butylene succinate) (IFR‐PBS) composites. A study on the effect of MgAlZnFe‐CO3 LDHs on the mechanical, thermal, and flame retardancy properties of IFR‐PBS composites was investigated. It was revealed that IFR‐PBS composites exhibited both excellent flame retardancy and antidripping properties when the content of MgAlZnFe‐CO3 LDHs was 1% (the total loading of flame retardant was 20%), for a goal of vertical flammability (UL‐94) V‐0 rate and a limiting oxygen index value of 35. The results showed that a suitable amount of MgAlZnFe‐CO3 LDHs had a noticeable synergistic effect on IFR‐PBS composites. Importantly, tensile strength and flexural strength were improved by the presence of MgAlZnFe‐CO3 LDHs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40736.  相似文献   

8.
    
In this work, a bio‐based flame retardant, casein, was incorporated into poly(lactic acid) (PLA) matrix by melt compounding in order to improve the fire resistance and sustain the biodegradable character of PLA simultaneously. The fire performance of PLA composites was evaluated by limiting oxygen index, UL‐94 vertical burning, and cone calorimeter tests, respectively. The results indicated that the introduction of 20% casein increased the limiting oxygen index value of PLA composites from 20.0% to 32.2%, upgraded the UL‐94 rating from no rating to V‐0, and decreased the peak heat release rate from 779 to 639 kW/m2. The decomposition products of PLA composites were analyzed by Fourier transform infrared, and the morphology of the char after combustion was observed by scanning electron microscopy. It was suggested that casein took effects in both gas phase by releasing non‐flammable gases (such as NH3 and H2O) and condensed phase by the formation of protective char layers. However, the presence of casein in PLA induced an unavoidable deterioration in the mechanical performance. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46599.  相似文献   

9.
    
This study presents a promising ultraviolet (UV)‐curable epoxy resin formulation with improved flame‐retardant properties. The formulation is based on the cycloaliphatic epoxide 3,4‐epoxycyclohexylmethyl‐3,4‐epoxycyclohexane carboxylate (ERL4221) and a novel silicon, phosphorous containing flame‐retardant additive. The additive, 1,3,5,7‐tetramethyl‐1,3,5,7‐tetra 2‐(6‐oxido‐6‐H‐dibenzo(c,e) (1,2)oxaphosphorin‐6‐yl) ethylcyclotetrasiloxane (DOPO‐SiD), was synthesized by the addition reaction of 1,3,5,7‐tetramethyl‐1,3,5,7‐tetravinylcyclotetrasiloxane (D4Vi) with 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO). Formulations containing the cycloaliphatic epoxy resin ERL4221 and the flame‐retardant DOPO‐SiD additive were prepared in various concentrations and crosslinked by UV irradiation. The effects of DOPO‐SiD and photoinitiators, such as the cyclopentadienyl iron complex of carbazole (In‐Fe) and diphenyl‐(4‐(phenylthiol) phenyl) sulfonium hexafluorophosphate (In‐S), on the flame‐retardant properties and thermal stabilities of UV‐cured ERL4221/DOPO‐SiD composites were investigated with limiting oxygen index, UL‐94 vertical test, and thermogravimetric analysis, respectively. The results showed that DOPO‐SiD can increase the thermal stabilities of the ERL4221/DOPO‐SiD. The char yield was improved when DOPO‐SiD and In‐Fe were simultaneously used. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40011.  相似文献   

10.
    
Tri(acryloyloxyethyl)phosphate (TAEP) and di(acryloyloxyethyl)ethyl phosphate (DAEEP) were used as reactive‐type flame‐retardant monomers along with commercial epoxy acrylate and polyurethane acrylate oligomers in ultraviolet (UV)‐curable resins. The concentrations of the monomers were varied from 17 to 50 wt %. The addition of the monomers greatly reduced the viscosity of the oligomers and increased the photopolymerization rates of the resins. The flame retardancy and thermal degradation behavior of the UV‐cured films were investigated with the limiting oxygen index (LOI) and thermogravimetric analysis. The results showed that the thermal stability at high temperatures greater than 400°C and the LOI values of the UV‐cured resins, especially those containing epoxy acrylate, were largely improved by the addition of the monomers. The dynamic mechanical thermal properties of the UV‐cured films were also measured. The results showed that the crosslink density increased along with the concentrations of the monomers. However, the glass‐transition temperature decreased with an increasing concentration of DAEEP because of the reduction in the rigidity of the cured films, whereas the glass‐transition temperature increased with the concentration of TAEP because of the higher crosslink density of the cured films. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 185–194, 2005  相似文献   

11.
    
Two unsaturated polyesters containing a halogen (bromine) in the backbone of the polymer chain were synthesized and compared with a halogen‐free polyester. The bromine content was measured by elemental analysis. The chemical structures of the polyesters were characterized by means of IR and 1H‐NMR spectroscopies. Feldspar was used as the filler to form the polyester composites. The effects of the halogen substituents, filler concentration, and crosslinking monomers and comonomers on the electrical and mechanical properties of the polyester composites were studied. The flammability was also investigated. The styrenated polyesters and their composites achieved fire resistance and good mechanical and electrical properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1356–1365, 2006  相似文献   

12.
    
In order to develop an environmentally benign flame retardant for bamboo/PLA composites (BPC), chitosan (CS) and tannic acid (TA) were used as cationic and anionic polyelectrolyte respectively to stabilize halloysite nanotubes (HNT) on the surface of bamboo fiber (BF) and poly(lactic acid) (PLA). Mechanical performance tests showed that the flexural properties of BPC were moderately enhanced with the addition of HNT, while the incorporation of CS/TA complex (FR) exhibited a slight increase. The results of thermogravimetric analysis demonstrated that CS/TA complex and HNT improved the thermal stability of the BPC synergistically, which increased the char residue. Limiting oxygen index and cone calorimetry tests were used to study the flammability of BPC and the results showed that the addition of CS/TA complex and HNT had a synergistic effect on the flame retardant performance of BPC materials. The macroscopic and microscopic morphological studies confirmed the formation of HNT layer in the matrix of BPC/5FR@5HNT samples, which facilitated more stabile char residue with the best flame retardant performance.  相似文献   

13.
    
Tri(acryloyloxyethyl) phosphate (TAEP) was blended in different ratios with epoxy acrylate EB600 and polyurethane acrylate EB270 to obtain a series of UV curable flame retardant resins. The thermal degradation mechanisms of their cured films in air were studied by thermogravimetric analysis, in situ Fourier‐transform infrared spectroscopy, and direct pyrolysis/mass spectrometry measurements. The results showed that the phosphate group in TAEP first degraded to form poly(phosphoric acid) before the degradation of EB600. Then, the formed poly(phosphoric acid) effectively promoted the conversion of EB600 to form char, which prevented the sample from further burning. However, urethane group in EB270 degraded simultaneously with phosphate group in TAEP, leading to not effectively increase the conversion of EB270 to char during the thermal degradation. It was thus found that the addition of TAEP more effectively improved the thermal stability, flame retardance, and the char yield during combustion of EB600 than those of EB270. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3130–3137, 2006  相似文献   

14.
    
The functional modification of poly (vinyl alcohol) (PVA) was conducted through phosphorus containing nitrogen heterocycles. This has been believed to have extensive thermal stability and heavy metal ion adsorption in the area of polymers. The heterocyclic modified polymers were characterized by Infra red (FTIR), Nuclear magnetic resonance spectroscopy, and elemental analysis. Thermogravimetric analysis studies displayed that phosphorus‐containing five membered and fused heterocyclic based PVA were less thermally stable than six membered compounds. Differential scanning calorimetric studies reported that the glass transition and melting point temperature of the heterocyclic modified PVA was higher than the pure PVA. X‐ray diffraction studies were done to analyze the structure of the modified polymer. Atomic force microscopy surface scans showed that the modified polymeric surface was found to have rough in micrometer scale. Modified PVA showed improved thermal stability, flame retardance, organosolubility, and surface roughness. The adsorption capacities of the modified PVA were determined for several heavy metal ions with the variation of pH. The adsorption capacity was found as 289 mg Pd2+/g of imidazole modified PVA and exhibited higher than other modified PVA. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
    
Ammonium polyphosphate (APP)/poly(butylene succinate) (PBS) composites were prepared with a unique water‐crosslinking technique to improve the flame retardancy and nondripping properties of the composites and to maintain the main structure of the composites during flame tests. The composites were treated with a coupling agent (tetraethoxysilane) and then were compounded in a twin‐screw extruder. The compound was moisture‐crosslinked. Fourier transform infrared spectra were used to monitor the water‐crosslinking reaction. The composites via the water‐crosslinking treatment exhibited improved mechanical properties because of the interfacial bonding between the APP and PBS matrix. Scanning electron microscopy of the fractured surfaces of the water‐crosslinked composites showed that the void size increased with increasing water‐crosslinking time. Composites with 15 wt % APP were classified as UL‐94 V‐2; however, the ones with only a 0.5‐h water‐crosslinking reaction were classified as UL‐94 V‐0. Thermal analyses of the water‐crosslinked composites indicated that the thermal degradation temperature of the composites increased with increasing water‐crosslinking time. Differential scanning calorimetry results revealed that the water‐crosslinking reaction could limit the crystallization rate of PBS. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2935–2945, 2006  相似文献   

16.
    
Epoxidized soybean oil was reacted with cinnamic acid with triphenyl phosphine as a catalyst. Cinnamic acid reacted with 79% of the available epoxy groups, and this yielded cinnamate esters of epoxidized soybean oil (ESOCA). 1H‐NMR, IR, and mass spectra of the new cinnamate derivatives confirmed the proposed structure. The mass spectra revealed that the average number of cinnamate groups per triglyceride molecule was 3.33. ESOCA could be photopolymerized with UV light. ESOCA could also be homopolymerized into a soft and insoluble polymer by free‐radical initiation and copolymerized with styrene, vinyl acetate, and methyl methacrylate. A mixture of ESOCA with 25 wt % styrene had a viscosity of 410 cP and could be free‐radically polymerized with benzoyl tert‐butyl peroxide at elevated temperatures. Differential scanning calorimetry confirmed the formation of copolymers. The ESOCA homopolymer and its copolymers all showed a first‐order transition by differential scanning calorimetry around ?1.5°C that was attributable to side‐chain relaxations of the triglyceride fatty acids. The styrene copolymer of ESOCA showed a tan δ peak at 66.6°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3882–3888, 2003  相似文献   

17.
    
A novel double-layered microencapsulated red phosphorus (DMRP) has been prepared through chemical precipitation of aluminum trihydrate (ATH) and in situ polymerization of melamine formaldehyde (MF) resin on the red phosphorus (RP) powder surface, and its structure was characterized by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The influence of DMRP on flame retardance and thermal stability of poly(lactic acid) (PLA) was thoroughly investigated by means of X-ray diffractometry (XRD), limiting oxygen index (LOI), vertical burning test, and thermogravimetric analysis (TGA). With an optimum mass ratio of RP/ATH/MF = 72.25%/12.75%/15%, it has been found that PLA with the addition of DMRP at 25 wt % loading level shows good flame retardance compared to plain RP as well as the conventional microencapsulated red phosphorus (CMRP), and can achieve UL94 V-0 rating along with an LOI increase from 20.5 to 29.3. The TGA and XRD studies indicate that the interaction occurs among all three components: RP, ATH, and MF resin. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
    
A copolymer of alkali lignin and polyacrylamide was fabricated by graft copolymerization, and further chelated with Fe3+. The obtained lignin chelate with star structure was used as synergistic agent and catalyst with the incorporation of intumescent flame retardants (IFRs) to prepare flame-retarded poly (butylene succinate) (PBS) composites. The replacement of IFR by lignin chelate favors the enhancement of mechanical performance, resulting in the synchronous improvement of tensile and flexural properties. Compared with the specimen used 25 wt% IFRs (75P/25I), the tensile strength, flexural strength, and modulus of specimen prepared by 23 wt% IFRs and 2 wt% lignin chelate (75P/23I/2LC) exhibited significant increased. A synergistic effect between IFR and lignin chelate occurred when they were combined with an appropriate ratio. When IFR and lignin chelate loadings were 24 and 1 wt%, respectively (75P/24I/1 LC), the limited oxygen index (LOI) value of 36.2% and UL-94 V0 rate of composite could be achieved. Compared with 75P/25I, the char residue mass of 75P/24I/1 LC increased by 35.7%. Moreover, SEM images indicated that a more compact, smooth, and continuous char layer of 75P/24I/1 LC could be formed during combustion. The peak heat release rate (pHRR) and total heat release (THR) of 75P/24I/1 LC decreased by 58.9% and 9.9% compared with PBS, also decreased by 10.3% and 4.8% compared with 75P/25I, respectively. TGIR and FTIR analysis also indicated that lignin chelate exhibited an excellent synergistic effect with IFRs, and gave PBS a good flame retardancy by making contribution to char-formation and gas-phase flame retardancy. This study provides an alternative way for the application of natural polymers such as lignin in flame retardant materials.  相似文献   

19.
    
The main aim of the work is to convert a low cost renewable biopolymer to a high performance fire‐retardant biomaterial by modification via grafting. Cellulose, a linear and most abundant biomacromolecule, has gained increasing attention for its interesting properties and potential applications in the synthesis of polymer nanocomposites. Cellulose has been grafted with butyl acrylate via emulsifier free emulsion polymerization using in situ developed transition metal complex initiating system: CuSO4/glycine/ammonium persulfate with and without additive kaolin to prepare nanocomposites and copolymer, respectively. The morphology of so‐prepared grafted nanocomposites was characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, and field emission scanning electron microscopy. The enhancement in thermal behavior and mechanical properties of nanocomposites over copolymer were outstanding. The fire‐retardant properties were evaluated by limiting oxygen index and cone calorimetry test. The biodegradation and water absorbency of the fire‐retardant nanocomposites have been carried out for better commercialization and environmental concern. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45968.  相似文献   

20.
    
In this study, mixing petroleum-based low-density polyethylene (LDPE) with biodegradable poly(lactic acid) (PLA) is used as polymer matrix. Boron compounds, metal hydroxides, melamine (MLM), ammonium polyphosphate (APP), and pentaerythritol (PER) were used as reinforcement materials to improve flame resistance of polymer matrix. The composite materials were characterized by Fourier transform infrared spectroscopy, limiting oxygen index (LOI), thermogravimetric analysis, mechanical test, and scanning electron microscopy analyses. The LOI analysis showed that for samples, which included MLM, APP, and PER, the LOI values were dramatically improved. Especially, the LOI value of sample Q (LDPE80/PLA20/APP30/PER15/MLM15/ZB3) was enhanced about 95.17% compared to polymer mixing. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48960.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号