首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Metal salts of mono(hydroxypentyl)phthalate [M(HPP)2, where M is Ca2+, Cd2+, Pb2+, or Zn2+] were synthesized by the reaction of 1,5‐pentane diol, phthalic anhydride, and metal acetate. A new series of metal‐containing polyurethanes containing ionic links in the main chain were synthesized by the reaction of hexamethylene diisocyanate or toluylene 2,4‐diisocyanate with the M(HPP)2 salts. The structures of the monomers and polymers were confirmed with infrared, 1H‐NMR, and 13C‐NMR spectra and elemental analysis. The polymers were also characterized with thermogravimetric analysis, differential scanning calorimetry, and solubility and viscosity measurements. The antibacterial activity of these polyurethanes was investigated with the agar diffusion method. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1194–1206, 2002  相似文献   

2.
Divalent metal salts of mono(hydroxybutyl)hexolate [M(HBH)2), M=Ca2+, Mn2+or Pb2+] were synthesized by the reaction of 1,4‐butanediol, 5,6,7,8,10,10‐hexachloro‐3a,4,4a,5,8,8a,9,9a‐octahydro‐5,8‐methanonaphtho‐[2,3‐C]‐furan‐1,3‐dione and divalent metal acetates. Hexamethylene bis [N′‐(1‐hydroxy‐2‐methyl‐prop‐2‐yl)urea] (HBHMPU) and tolylene 2,4‐bis[N ′‐(1‐hydroxy‐2‐methyl‐prop‐2‐yl)urea] (TBHMPU) were synthesized by reacting 2‐amino‐2‐methyl‐propan‐1‐ol with hexamethylene diisocyanate (HMDI) and tolylene 2,4‐diisocyanate (TDI), respectively, in toluene solvent. Flame‐retardant metal‐containing polyurethanes were synthesized by the solution polymerization of HMDI with M(HBH)2 and the polyurethane–ureas by reacting HMDI with 1:1 mixture of M(HBH)2 and HBHMPU or TBHMPU, respectively, in DMSO as solvent. The polymers have been characterized by elemental analysis, solubility, viscosity and IR and 1H NMR spectroscopy. The thermal stability of the polymers has been studied by thermogravimetry. The flame‐retardant property of the polymers has been investigated by measuring limiting oxygen index values. © 2000 Society of Chemical Industry  相似文献   

3.
Summary Divalent metal salts of mono(hydroxyethyl)phthalate (HEP) were considered to be of interest as difunctional ionic monomers and are useful for the preparation of condensation polymers. Recently, Matsuda1 reported the preparation of Ca, Mg and Zn salts of mono-(hydroxyethyl)phthalate and their polymers2–7. He prepared these salts by the reaction of HEP with the respective divalent metal oxides. But so far there was no report on the preparation of Pb2+ and Mn2+ salts of HEP. Since metal dicarboxylates can be obtained by the reaction of organic dibasic acids and metal acetates8, Pb2+ and Mn2+ acetates can similarly react with HEP to give their respective salts at the optimum temperature. We report here the synthesis and characterisation of Pb2+ and Mn2+ salts of mono(hydroxyethyl)-phthalate (HEP).  相似文献   

4.
Four novel types of polyurethanes (PUs) were prepared from N1,N2‐bis[(4‐hydroxyphenyl)methylene]ethanedihydrazide with two aromatic diisocyanates (4,4′‐diphenylmethane diisocyanate and tolylene 2,4‐diisocyanate) and two aliphatic diisocyanates (isophorone diisocyanate and hexamethylene diisocyanate). The chemical structure of both diol and PUs was confirmed by UV–vis, fluoroscence, FTIR, 1H NMR, and 13C NMR spectral data. DSC data show that PUs have multiple endotherm peak. X‐ray diffraction revealed that the PUs contained semicrystalline and amorphous regions that varied with the nature of the backbone structures. PUs were soluble in polar aprotic solvents. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
This article deals with the synthesis and characterization of novel polyurethanes (PUs) by the reaction between two aromatic diisocyanates (4,4′‐diphenylmethane diisocyanate and tolylene 2,4‐diisocyanate) and two aliphatic diisocyanates (isophorone diisocyanate and hexamethylene diisocyanate) with N1,N4‐bis[(4‐hydroxyphenyl)methylene]succinohydrazide, which acted as hard segment. UV–vis, FTIR, 1H NMR, 13C NMR, and DSC/TGA analytical technique has been used to determine the structural characterization and thermal properties of the hard segmented PUs. X‐ray diffraction revealed that PUs contained semicrystalline and amorphous regions that varied depending upon the nature of the backbone structures. PUs were soluble in polar aprotic solvents. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Water‐insoluble polyaspartyl polymers were synthesized by using water as medium instead of organic medium. Taking Ca2+ as a reference, the binding of several heavy‐metal ions, including Pb2+, Cd2+, Hg2+, Cr3+, Cu2+, and Mn2+, by polyaspartyl polymers was studied. The experimental results revealed that polyaspartate is an excellent binding agent for the investigated heavy‐metal ions. These cation ions were bound to polyaspartate polymer by the same mechanism as Pb2+, which can be explained by ion exchange model. Since polyaspartate has a protein‐resembling structure that is sensitive to trace heavy metal, it was used to remove some trace heavy‐metal elements in Chinese herbal medicines. It was found that polyaspartate material was an effective agent for the removal of Pb2+, Cd2+, and Hg2+ ions from glycyrrhizin, angelica, and gynostemma pentaphyllum. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
N‐heterocyclic acrylamide monomers were prepared and then transferred to the corresponding polymers to be used as an efficient chelating agent. Polymers reacted with metal nitrate salts (Cu2+, Pb2+, Mg2+, Cd2+, Ni2+, Co2+, Fe2+) at 150°C to give metal‐polymer complexes. The selectivity of the metal ions using prepared polymers from an aqueous mixture containing different metal ion sreflected that the polymer having thiazolyl moiety more selective than that containing imidazolyl or pyridinyl moieties. Ion selectivity of poly[N‐(benzo[d]thiazol‐2‐yl)acrylamide] showed higher selectivity to many ions e.g. Fe3+, Pb2+, Cd2+, Ni2+, and Cu2+. While, that of poly[N‐(pyridin‐4‐yl)acrylamide] is found to be high selective to Fe3+ and Cu2+ only. Energy dispersive spectroscopy measurements, morphology of the polymers and their metallopolymer complexes, thermal analysis and antimicrobial activity were studied. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42712.  相似文献   

8.
Eight different types of novel polyurethanes (PUs) were synthesized through the polyaddition reaction of 4,4′‐(ethane‐1,2‐diylidenedinitrilo)diphenol and 4,4′‐(pentane‐1,5‐diylidenedinitrilo)diphenol with four different diisocyanates: 4,4′‐diphenylmethane diisocyanate, toluene 2,4‐diisocyanate, isophorone diisocyanate, and hexamethylene diisocyanate. The resulting PUs were soluble in polar, aprotic solvents. Structures of the diols and PUs were established with ultraviolet–visible, fluorescence, Fourier transform infrared (FTIR), 1H‐NMR, and 13C‐NMR spectroscopy data. FTIR and NMR spectral data indicated the disappearance of both hydroxyl and isocyanate groups in the PUs. The thermal properties were investigated with thermogravimetry and differential scanning calorimetry. The weight losses, glass transitions, onset temperatures, and crystalline melting temperatures were measured. All the PUs exhibited semicrystalline and amorphous morphologies, as indicated by X‐ray diffraction. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009.  相似文献   

9.
Copolymers (8‐HQ5‐SAOF) were synthesized by the condensation of 8‐hydroxyquinoline 5‐sulphonic acid (8‐HQ5‐SA) and oxamide (O) with formaldehyde (F) in the presence of acid catalyst. Four different copolymers were synthesized by using varied molar proportion of the reacting monomers. Copolymer resin composition has been determined on the basis of their elemental analysis and average molecular weights of these resins were determined by conductometric titration in nonaqueous medium. Viscometric measurement in dimethyl sulphoxide (DMSO) has been carried out with a view to ascertain the characteristic functions and constants. Electronic spectra, FTIR, and proton nuclear magnetic resonance spectra were studied to elucidate the structures. The newly synthesized copolymer proved to be a selective chelating ion‐exchange copolymer for certain metals. The chelating ion‐exchange properties of this synthesized copolymer was studied for different metal ions such as Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, and Pb2+. A batch equilibrium method was used in the study of the selectivity of metal ion uptake involving the measurements of the distribution of a given metal ion between the copolymer sample and a solution containing the metal ion only for representative copolymer 8‐HQ5‐SAOF‐I due to economy of space. The study was carried out over a wide pH range, shaking time, and in media of various ionic strengths. The copolymer showed a higher selectivity for Fe3+, Cu2+, and Ni2+ ions than for Co2+, Zn2+, Cd2+, and Pb2+ ions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Four novel segmented polyurethanes (PUs) based on4,4′‐{oxy‐1,4‐diphenyl bis(nitromethylidine)}diphenol (ODBNMD) diol with different diisocyanates such as 4,4′‐diphenylmethane diisocyanate, toluene 2,4‐diisocyanate, isophorone diisocyanate, and hexamethylene diisocyanate have been prepared by solution method. The structures of ODBNMD and PUs have been confirmed by Fourier transform infrared (FTIR), nuclear magnetic resonance (1H‐NMR and 13C‐NMR), UV‐visible, and fluorescence spectroscopies. The segmented PUs were further characterized by thermogravimetry (TGA), differential scanning calorimetry (DSC), and wide‐angle X‐ray diffraction. FTIR confirmed hydrogen bonding interactions, whereas TGA and DSC suggested that introduction of aromatic/phenyl ring in the main chain considerably increased the thermal stability. POLYM. ENG. SCI., 54:24–32, 2014. © 2013 Society of Plastics Engineers  相似文献   

11.
A calcium salt of mono(hydroxyethoxyethyl)phthalate [Ca(HEEP)2] was synthesized by the reaction of diethylene glycol, phthalic anhydride, and calcium acetate. Four different bisureas like hexamethylene bis(ω,N‐hydroxyethylurea), tolylene 2,4‐bis(ω,N‐hydroxyethylurea), hexamethylene bis(ω,N‐hydroxypropylurea), and tolylene 2,4‐bis(ω,N‐hydroxypropylurea) were prepared by reacting ethanolamine or propanolamine with hexamethylene diisocyanate (HMDI) or tolylene 2,4‐diisocyanate (TDI). Calcium‐containing poly(urethane‐urea)s (PUUs) were synthesized by reacting HMDI or TDI with 1:1 mixtures of Ca(HEEP)2 and each of the bisureas using di‐n‐butyltin dilaurate as a catalyst. The PUUs were well characterized by Fourier transform infrared, 1H‐ and 13C‐NMR (nuclear magnetic resonance), solid‐state 13C cross‐polarization–magic angle spinning NMR, viscosity, solubility, elemental, and X‐ray diffraction studies. Thermal properties of the polymers were also studied by using thermogravimetric analysis and differential scanning calorimetry. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3488–3496, 2003  相似文献   

12.
Amberlite XAD‐2 has been functionalized by coupling through –SO2‐with ethylenediamine, propylenediamine, and diethylenetriamine to give the corresponding polyamine chelating resins I–III. The solid metallopolymer complexes of the synthesized chelating resins with Cu2+, Zn2+, Cd2+, and Pb2+ were synthesized. The polyamine derivatives and their metal complexes were characterized by elemental analysis, spectral (IR, UV/V, and ESR), and magnetic studies. The batch equilibrium method was utilized for using the chelating polyamines for the removal of Cu+2, Zn+2, Cd+2, and Pb+2 ions from aqueous solutions at different pH values and different shaking times at room temperature. The selective extraction of Cu+2 from a mixture of the four metal ions and the metal capacities of the chelating resins were evaluated using atomic absorption spectroscopy. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1839–1846, 2005  相似文献   

13.
This article reports the synthesis, characterization, and ion exchange properties of a terpolymer. The terpolymer resin salicylic acid‐diaminonaphthalein‐formaldehyde (SDNF) was synthesized by the condensation of salicylic acid and diaminonaphthalein with formaldehyde in the presence of a hydrochloric acid catalyst. Terpolymer resin was characterized by elemental analysis, infrared (IR) spectroscopy, nuclear magnetic resonance spectroscopy, and UV–Visible spectral studies. The number average molecular weight of the resin was determined by nonaqueous conductometric titration. Chelation ion exchange properties have also been studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, Pb2+ ions employing a batch equilibrium method. It was employed to study the selectivity of metal ion uptake involving the measurements of distribution of a given metal ion between the polymer sample and a solution containing the metal ion. The study was carried out over wide pH range and in a media of various ionic strengths. The terpolymer showed higher selectivity for Fe3+, Cu2+, and Ni2+ions than for Co2+, Zn2+, Cd2+, and Pb2+ ions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
A new hydrogel that contains sulfur is prepared by radiation polymerization and its application for recovery of Hg2+, Pb2+, Cd2+, and Cu2+ ions is discussed. The metal hydrogel complexes are isolated and characterized by using different spectroscopic techniques (UV‐visible, IR, NMR, and mass), thermal analysis (TGA and DSC) measurements, and SEM. Also, the mode of complexation is determined using IR and NMR spectroscopy. The scanning electron micrographs show that the hydrogel has a great ability to recover the metal ions in the following order: Hg2+ > Cd2+ > Pb2+ > Cu2+. TGA thermograms are used to investigate the mechanism of thermal decomposition. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 955–966, 2000  相似文献   

15.
《分离科学与技术》2012,47(7):965-974
Terpolymer resins have been synthesized by condensation of p-nitrophenol, triethylenetetramine, and formaldehyde in the presence of 2 M NaOH as a catalyst with different molar proportions of monomers. Newly synthesized terpolymers were proved to be selective chelation ion exchangers for metal ions like Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, Hg2+, and Pb2+. A batch equilibrium study was carried out over a wide pH range, shaking time, and in media of various ionic strengths of different electrolytes and shows higher selectivity for Hg2+, Cd2+, and Pb2+. Distribution ratios of metal ions were found to be increased by increasing pH of solutions; hence the resins can be used to recover certain metals from waste solutions and removal of iron from boiler water.  相似文献   

16.
Eight novel polyurethanes (PUs) based on 4,4′-[1,4-phenylenedi-diazene-2,1-diyl]bis(2-carboxyphenol) and 4,4′-[1,4-phenylenedi-diazene-2,1-diyl]bis(2-chloro- phenol) as hard segments with four diisocyanates viz., 4,4′-diphenyl-methane diisocyanate, toluene 2,4-diisocyanate, isophorone diisocyanate and hexamethylene diisocyanate were prepared. Structural and thermal characterization of the segmented PUs were determined by FT-IR, UV spectrophotometry, fluoroscence spectroscopy, 1H NMR, 13C NMR spectroscopy and DTA/TGA analysis. All the PUs contain domains of semi-crystalline and amorphous structures, as indicated by X-ray diffraction. PUs were soluble in polar aprotic solvents like N-methyl-2-pyrrolidone (NMP), dimethyl formamide (DMF) and dimethylsulfoxide (DMSO).  相似文献   

17.
A copolymer (4‐HAOF) prepared by condensation of 4‐hydroxyacetophenone and oxamide with formaldehyde in the presence of an acid catalyst proved to be a selective chelating ion‐exchange copolymer for certain metals. Chelating ion‐exchange properties of this copolymer were studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, Pb2+, and Hg2+ ions. A batch equilibrium method was employed in the study of the selectivity of metal‐ion uptake involving the measurements of the distribution of a given metal ion between the copolymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in media of various ionic strengths. The copolymer showed a higher selectivity for Fe3+ ions than for Co2+, Zn2+, Cd2+, Pb2+, Cu2+, Ni2+, and Hg2+ ions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 787–790, 2003  相似文献   

18.
In this work, a novel polymer polyamic hydrazide (PAH) was synthesized via the reaction of terephthalohydrazide with pyromelitic dianhydride. The obtained PAH was characterized with nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FT‐IR) spectroscopy and elemental analysis. Finally, a novel magnetic nanocomposite was prepared by immobilization of PAH on the Fe3O4 nanoparticles in water. The prepared magnetic nanocomposite was successfully used for selective removal of Pb2+ and Cd2+ ions from industrial wastes and the effects of affecting parameters on the adsorption capacity of the magnetic nanocomposite adsorbent for the removal of Pb2+ and Cd2+ from model aqueous solutions were investigated. The maximum adsorption capacities of Pb2+ and Cd2+ were found to be 138.9 and 103.1 mg g?1, respectively. The kinetics and mechanism of the adsorption of Pb2+ and Cd2+ on the surface of the prepared nanocomposite were studied and it was found that complex formation between active sites of the surface of the nanocomposite and metal ions is the possible mechanism for adsorption of metal cations. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42538.  相似文献   

19.
《分离科学与技术》2012,47(14):2963-2986
Abstract

For the functional enhancement of chelating resins containing carboxylic acids, copolymer beads were prepared by suspension polymerization of styrene (St), methyl methacrylate (MMA), and divinylbenzene (DVB) in the presence of toluene as diluent. The phenyl rings of the beads were directly chloromethylated, and the carboxylic ester groups of the beads were converted into hydroxymethyl groups by reduction followed by chlorination to give chloromethyl groups, respectively. The chelating resins containing a pair of neighboring carboxylic acid groups (NCAGs) were obtained by the alkylation of chloromethyl groups in copolymer beads with diethyl malonate in the presence of sodium hydride followed by hydrolysis using aqueous alkali solution. Accordingly, the structural effects of the resins on the adsorption of heavy metal ions were investigated. Poly(St‐co‐DVB)‐based chelating resin containing NCAGs showed adsorption abilities toward heavy metal ions like Pb2+, Cd2+, and Cu2+, whereas poly(MMA‐co‐DVB)‐based chelating resin containing NCAGs showed adsorption abilities toward heavy metal ions like Cu2+, Cd2+, and Co2+. On the other hand, poly(St‐co‐MMA‐co‐DVB)‐based chelating resin containing NCAGs showed adsorption abilities toward heavy metal ions like Pb2+, Cd2+, Hg2+, Co2+, and Cu2+: a synergistic effect on the adsorption of heavy metal ions like Pb2+, Cd2+, Hg2+, and Co2+ was observed. The adsorption ability of poly(St‐co‐MMA‐co‐DVB)‐based chelating resin among three kinds of chelating resins was relatively good.  相似文献   

20.
《分离科学与技术》2012,47(9):1349-1355
A new silica gel material covalently bonded with 1-(pyridin-2-yl) imine (SiNPn) was synthesized and well characterized by elemental analysis, FT–IR, 13C NMR of the solid state, nitrogen adsorption-desorption isotherm, BET surface area, B.J.H. Pore sizes, thermogravimetry curves (TGA), and scanning electron microscope (SEM). The new chelating surface exhibits good chemical and thermal stability. The adsorption capabilities of this new system towards toxic metal ions (Hg2+, Cd2+, Pb2+, and Zn2+) were investigated using the batch method. The percentage limits of extraction were determined by atomic absorption measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号