首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aerodynamics of particles and gas flow in a two‐dimensional spouted bed (2DSB) with draft plates is investigated with the aid of the discrete element method. The geometry of the 2DSB with draft plates is set as close as possible to the experimental apparatus of Kudra [1] and Kalwar [2]. The physical properties of the coarse particles are similar to those of shelled corn. The calculated minimum spouting velocity and pressure drop agree well with the correlations of Kudra [1] and Kalwar [2]. In the spout region, the particle vertical velocities are found to decrease as the height increases. The fluid velocity in the downcomer region decreases as the superficial gas velocity increases. The particle circulation rate increases when the friction coefficient decreases or the separation height increases. At the minimum spouting velocity, the bed height does not affect the particle circulation rate in the 2DSB with draft plates. The draft plates not only reduce the minimum spouting velocity and pressure drop but also increase the maximum spoutable bed height. The effect of taking out the draft plates on the spouting phenomenon is investigated and the effect of putting in a deflector on the possible breakage of the particles is also estimated.  相似文献   

2.
带导流管的二维喷动床(2-DSBDP)是传统喷动床的改进型式,矩形床内设置的与床同厚的垂直导流管可以控制固体颗粒的循环速率, 同时使下行区中的气固移动床维持平推流. 本文实验测定了不同表观气速、床层高度、固体颗粒与气体入口尺寸时, 二维导流管喷动床的床压降及相应的空隙率,藉以阐述2-DSBDP的流动特征.  相似文献   

3.
The similarity and difference between the flat‐bottom and cone‐bottom cylindrical spouted beds, conical spouted beds and vertical upward jets in fluidized beds have been analyzed in this paper based on the effects of geometrical parameters on the minimum spouting velocity and operating stabilities of the spouted beds. The effect of angle on minimum spouting velocity was found to be only significant within the range of 30 to 60 degrees cone angles. Minimum spouting velocity in deep cylindrical spouted beds was proportional to the square root of the static bed height, but was proportional to the static bed height in conical spouted beds and large cylindrical spouted beds with small height‐to‐diameter ratio. The relationship between the minimum spouting velocity and the static bed height was consistent with that between jet velocity and the vertical jet penetration length in jetting fluidized beds.  相似文献   

4.
A novel biomass, autothermal, fast pyrolysis reactor with a draft tube and an internal dipleg dividing the reactor into two interconnected beds is proposed. This internally interconnected fluidized beds (IIFB) reactor is designed to produce high‐quality bio‐oil using catalysts. Meanwhile, the pyrolysis by‐products, i.e., char, coke and non‐condensable gases, are expected to burn in the combustion bed to provide the heat for the pyrolysis. On the other hand, the catalysts can be regenerated simultaneously. In this study, experiments on the hydrodynamics of a cold model IIFB reactor are reported. Geldart group B and D sand particles were used as the bed materials. The effects of spouting and fluidizing gas velocities, particle size, static bed height and the total pressure loss coefficient of the pyrolysis bed exit, on the flow patterns and pressure drops of the two interconnected beds are studied. Six distinct flow patterns, i.e., fixed bed (F), periodic spouted/bubbling bed (PS/B), spouted bed with aeration (SA), spout‐fluidized bed (SF), spout‐fluidized bed with slugging (SFS) and spouted bed with backward jet (SBJ) are identified. The investigations on the pressure drops of the two beds show that both of them are seen to increase at first (mainly in the F flow pattern), then to decrease (mainly in the PS/B and SA flow patterns) and finally to increase again (mainly in the SA and SF flow patterns), with the increase of the spouting gas velocity. It is observed that a larger particle size and lower static bed height lead to lower pressure drops of the two beds.  相似文献   

5.
A cylindrical gas-liquid-solid spouted bed, driven exclusively by gas flow, has been developed with a high potential for use in biochemical processes, such as a biological wastewater treatment. A plexiglass column with a 152 mm inner diameter was used in combination with a 53 mm inner diameter plexiglass draft tube. Three particle types were studied with densities ranging from 1044 kg/m3-1485 kg/m3 and average particle sizes ranging from 0.7-2.5 mm. Four flow regimes were observed when increasing the gas velocity, including fixed bed, semispouted bed, full spouted bed, and internal circulating fluidized bed. The transition gas velocities between those regimes were experimentally measured and termed as minimum spouting velocity, full spouting velocity, and minimum circulating velocity, respectively. A measurement of the downward particle flux in the annulus was used to identify the minimum spouting velocity, while the particle velocity and dense phase retraction in the annulus were monitored for the full spouting and minimum circulating velocities. All regime transition velocities increased with more dense particles and longer draft tubes. The minimum spouting velocity and full spouting velocity were not affected when varying the nozzle-tube gap, while the minimum circulating velocity increased with longer nozzle-tube gaps. Experiments without a draft tube were carried, though the spouting stability was significantly reduced without the draft tube.  相似文献   

6.
喷动床内气固两相流体动力行为的数值模拟   总被引:6,自引:4,他引:2  
引 言喷动床被广泛应用于不同工业领域中 ,如石油裂解反应 -再生器、煤和农业废弃物气化和燃烧 ,喷动床还被应用于粮食和药品的干燥等[1] .因此 ,喷动床设计应满足不同应用的要求 .喷动床内气相反应物的反应时间和停留时间依赖于床体几何结构和运行参数 .尽管已有许多的实验对喷动床内气固两相流动进行了研究 ,得到了喷射区、环形区和喷泉区内的气固两相流动流体动力特性 ,然而由于喷动床内气固两相流动的复杂性 ,人们对床体几何结构和运行参数对喷动床动力学的影响至今并不清楚 .因此 ,床体几何结构和运行参数等对喷动床动力学的影响成为…  相似文献   

7.
Spouted beds of rectangular cross-section with gas entry through bottom slots have been proposed as a means of overcoming scale-up difficulties of conventional spouted beds. A study was undertaken of bed hydrodynamics in a thin slot-rectangular column of width 150 mm and slot width 2 to 20 mm for four types of particles. Flow regimes and bed hydrodynamics are qualitatively similar to those in cylindrical spouted beds, but there are significant quantitative differences caused by the different geometry. Slot width exerts a strong influence on such features as flow regimes, maximum spoutable bed height, minimum spouting velocity, pressure drop and fountain height.  相似文献   

8.
Experiments were carried out to determine the flow stability of slot‐rectangular spouted beds of 300 × 100 mm cross‐section with slots of different widths, lengths, and depths. The effects of slot expansion angle and diverging base were also investigated. Dependent variables included the minimum spouting velocity, bed pressure drop and standard deviation of pressure fluctuations. Based on the flow regimes and spout termination mechanisms, instability was found to be mainly due to the interaction of multiple spouts. Criteria were identified relating stable spouting to slot dimensions and particle size. Slots of limited cross‐sectional area can provide sustainable and symmetric spouting with little fluctuation, as long as the slot length‐to‐width ratio and depth are within certain limits, related to those for conventional spouted beds.  相似文献   

9.
Spouted beds of rectangular cross-section with gas entry through bottom slots have been proposed as a means of overcoming scale-up difficulties of conventional spouted beds. A study was undertaken of bed hydrodynamics in a thin slot-rectangular column of width 150 mm and slot width 2 to 20 mm for four types of particles. Flow regimes and bed hydrodynamics are qualitatively similar to those in cylindrical spouted beds, but there are significant quantitative differences caused by the different geometry. Slot width exerts a strong influence on such features as flow regimes, maximum spoutable bed height, minimum spouting velocity, pressure drop and fountain height.  相似文献   

10.
Flow behavior of particles in a two-dimensional spouted bed with a draft tube is studied using a continuous kinetic-friction stresses model. The kinetic stress of particles is predicted from kinetic theory of granular flow, while the friction stress is computed from a model proposed by Johnson et al. (1990). A stitching function is used to smooth from the rapid shearing viscous regime to the slow shearing plastic regime. The distributions of concentration and velocities of particles are predicted in the spouted bed with a draft tube. Simulated results compare with the vertical velocity of particles (Zhao et al., 2008) measured and in the spout bed with draft plates and solid circulation rate (Ishikura et al., 2003) measured in the spouted bed with a draft tube. The impact of the friction stress of particles on the spout, annulus, fountain and entrancement regions is analyzed in gas–solid spouted bed with a draft tube. Numerical results show that the gas flow rate through the annulus increases with the increase of the entrainment zone. The solids circulation rate decreases with the decrease of inlet gas velocity and the height of the entrainment zone. The effect of spouting gas velocity on distributions of concentration, velocity and particle circulation is discussed.  相似文献   

11.
The flow behaviours of gas‐solids were predicted by means of a hydrodynamic model of dense gas‐solid flow in spouted beds. Constitutive equations describing the particulate solids pressure and viscosity were implemented into a hydrodynamic simulation computer program. The effect of operating conditions (inclined angle and gas spouting velocity) on particle velocity and concentration in the spout, annulus and fountain regions were numerical studied. Both vertical and horizontal particle velocities increased with increasing spouting gas velocity. The diameter of the spout increases with decreasing the inclination angle. As the inclination angle is set greater than 60°, the spout cross‐section starts becoming bottlenecked, limiting the upwards flow of solids.  相似文献   

12.
赵永志  程易  金涌 《化学工程》2007,35(6):24-28
采用离散单元法(DEM)-计算流体力学(CFD)双向耦合数值方法对二维导流管喷动床进行了模拟,颗粒的运动通过DEM模型描述,而气体的运动用Navier-Stokes方程进行求解,气体和固体颗粒之间的相互作用通过曳力形式传递。文中将DEM和边界元方法(BEM)结合起来解决颗粒在具有复杂边界设备内的运动。通过采用BEM+DEM-CFD相结合的方法进行模拟计算,得到了喷动床的最小喷动速度,研究了不同表观气速下床内的流型,得到了二维导流管喷动床的床层压降与表观气速的关系,统计分析了喷射区、环隙区内颗粒的运动速度和相应的空隙率,全面地描述了二维导流管喷动床内的气固流动特征。  相似文献   

13.
Minimum spouting velocities in conical spouted beds have been obtained from pressure drops versus the superficial gas velocity curves, based on both increasing and decreasing the superficial gas velocity. It has been shown that the minimum spouting velocity from decreasing the superficial gas velocity is lower than from increasing the superficial gas velocity in most cases. This phenomenon is similar to that in conventional spouted beds and different from the early works. The experimental results also showed that there isn't significant difference in the pressure drop and Ums under identical operating conditions between semi‐circular and circular conical spouted beds, and the same Ums can be obtained from absolute pressure drops at any position above the gas inlet. The Ums is found to increase with increasing the cone angle and static bed height, as well as the gas inlet diameter to a less extent.  相似文献   

14.
双喷嘴矩形喷动床流动性能实验研究   总被引:1,自引:0,他引:1  
张少峰  王淑华  赵剑波 《化学工程》2006,34(11):33-35,39
在120 mm×240 mm的双喷嘴矩形不锈钢床内,对新型双喷嘴矩形导流管喷动床的最小喷动速度和喷动高度进行了研究,考察了喷动气速、粒径、静床层高度、导流管直径、导流管安装位置对最小喷动速度和喷动高度的影响。结果表明:最小喷动速度随颗粒直径、导流管直径、导喷距的增大而增大,随静床层高度的增大而减小;喷动高度随喷动气速的增大而增大,随导流管直径的增大而减小,受静床层高度和导喷距的影响不大,并得出了最小喷动速度的关联式。  相似文献   

15.
导向管喷动床是较为常见的一种喷动床改进床型,通过阻断喷动区与环隙区气固接触来提高颗粒循环的规律性与稳定性。本文采用计算颗粒流体力学(CPFD)方法对于直径150mm的柱锥式导向管喷动床进行了数值模拟研究,考察了导向管直径对于喷动床内颗粒流动特性的影响,从环隙区死区分布、颗粒速度分布、固体循环量等方面分析了具有不同直径导向管喷动床的运行状态。结果表明,加入导向管在减少床内死区的同时也降低了运行时的固体循环量,对于本次采用的喷动床结构尺寸与运行参数,只有在导向管直径为40~60mm时才能保证床内具有良好喷动状态,综合考虑各因素,选用直径50~55mm的导向管最为合适。对于具有类似结构与运行条件的柱锥喷动床,导向管直径可考虑选为无导向管运行时喷动区直径的1.2~1.375倍。  相似文献   

16.
Differential pressure fluctuation measurements were conducted in a gas spouted bed of 120 mm in diameter at different axial and radial positions. Hurst's rescaled range analysis of the differential pressure fluctuation signals was successfully employed to recognize different flow regimes, i.e. packed bed, stable spouting and unstable spouting, and characterize their transitions. Obvious two‐phase behaviour, as suggested by two Hurst exponents, was observed in the stable spouting regime. It had also been found that the spouting behaviour in deeper spouted beds was significantly different from that in shallow spouted beds. The influences of measurement location and bed height on the Hurst exponents were discussed.  相似文献   

17.
一种新颖的环形喷动床由内外两个不同内径、同心的垂立圆筒组成,在环形空间底部设置多个喷口,在喷口两侧布置倾斜的导流板.研究颗粒在这种喷动床内的流动特性,探讨喷口结构、颗粒种类以及床内载料量对环形喷动床颗粒喷动特性的影响.实验结果表明:颗粒在环形喷动床内分为三个明显不同的区域,即颗粒填充移动区、密相喷动流化区以及稀相夹带区.当颗粒出现分区喷动后,随床内载料量的增多,填充移动区的高度维持不变,始终等于导流板的高度,而密相喷动区的高度不断增加.风量和颗粒种类对床层最大喷动量、密相喷动高度以及床层压力分布规律有着十分重要的影响.采用不同的喷口结构时,在相同的载料量下,直向喷口的密相喷动区高度更大,而且床内各测点的平均压力大于采用斜向喷口时的相应测点压力.  相似文献   

18.
In order to properly design and scale up spouted beds, one needs to predict the minimum spouting velocity of specific systems having different bed dimensions, and properties of particle and spouting gas. Because of inherent complexity of predicting minimum spouting velocity, the prevailing approach has been to use empirical correlations, a number of which are available in the literature. Central jet distributors are commonly used in the experimental studies reported in the literature. Circular slit distributor is a new concept in which air is supplied to the bed of particles through a circular slit. This paper presents results of an experimental study on the hydrodynamics of central jet and circular slit distributors. In this paper a fully connected feed-forward neural network model was used to predict the minimum spouting velocity of central jet and circular slit spouted beds. A neural network model was also developed to predict minimum fluidization velocity. The actual experimental data obtained from published literature and from the experiments carried out in this study were used for training and validating the models. The minimum spouting and fluidization velocities predicted using the neural network models developed in this study show a better approximation to the actual experimental values than those obtained from correlations available in the open literature. The position of flow regime of circular slit spouted bed was also established relative to the flow regimes of central jet spouted bed and fluidized bed.  相似文献   

19.
Geometrically similar spouted beds with draft plates were used to obtain the drying characteristics of freshly harvested shelled corn with 0.28 to 0.31 kg/kg initial moisture content at different air inlet temperatures and bed heights. Thermal equilibrium between air and grains was achieved at minimum spouting conditions. The drying kinetics of shelled corn in a drafted two-dimensional spouted bed was found to be of the "thin layer" type. Expressions for the model parameters in Page's equation accounting for the bed geometry, grain moisture content, and drying conditions were developed.  相似文献   

20.
This paper aims to analyze air-solid flow behavior in conical spouted beds composed of glass bead mixtures coated by glycerol. Four mixtures of glass beads are used as the solid phase. Although these mixtures have the same mean Sauter diameter, each one is characterized by a different size distribution function (mono-sized; flat, Gaussian or binary size distribution). When glycerol is added to the bed of these particles, which are spouted by air, the gas-solid flow characteristics are changed due to the growth of interparticle forces; however, the trends of these changes are affected by the glass bead mixture type as well as by the concentration of glycerol. For beds of mono-sized particles, the minimum spouting velocity is maintained almost unchanged as the glycerol concentration rises; while, for beds of inert particle mixtures, this velocity increases, becoming greater for flat and binary size distribution particles. Conversely, the minimum spouting pressure drop decreases as the glycerol concentration rises for all beds of particles used. Based on theoretical prediction of interparticle forces, it is shown that these changes in the minimum spouting conditions can be explained by the magnitude of these forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号