首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
研究了 40Cr钢经水冷淬火和高温回火后的超塑性。结果表明 :40Cr钢的晶粒尺寸为 1 0~ 1 5 μm ,在温度为 75 0℃、初始应变速率为 1 0×1 0 - 3s- 1 的拉伸变形条件下 ,超塑伸长率为 30 4 % ,流变应力为 63 0MPa ,应变速率敏感性指数m值为 0 2 2 7,超塑性变形的机制可描述为原子扩散控制的晶界滑动。  相似文献   

2.
对挤压态ZE10镁合金在300~400℃及应变速率10-4~10-2s-1条件下进行了超塑性拉伸试验研究。结果表明:晶粒约为5 μm的ZE10镁合金挤压材,在350℃及应变速率为4.80× 10-3s-1条件下即可获得330%的较大伸长率,在5.55×10-4s-1应变速率下,可获得364%的最大伸长率。在350℃以应变速率4.80×10-3s-1拉伸,在变形初始阶段伸长量为50%时,合金的晶粒尺寸为2.8μm,当试样拉伸至断裂时,晶粒尺寸为4.2μm。说明在变形过程中具有动态再结晶的发生,而且晶粒长大趋势较小。试样拉断时,断口具有典型的空洞形貌特征。  相似文献   

3.
研究了40Cr钢的低温超塑性。结果表明:经3次840℃×40 min水淬+650℃×2h回火的超塑性预处理后,40Cr钢的组织为回火索氏体,晶粒尺寸为5-10μm,在温度为650℃、初始应变速率为3.16×10-4 s-1的拉伸变形条件下,流变应力为:108.1 MPa,断后伸长率为254%,应变速率敏感性指数m值为0.221,超塑变形的主要机制可描述为原子扩散控制的晶界滑动。  相似文献   

4.
采用Gleeble 3800型热模拟试验机测定了含磷高强无间隙原子钢(IF钢)在变形温度为950,850 ℃,单道压缩变形量为50%,变形速率为0.01,0.1,1,10 s-1时的应力应变曲线,对其变形行为进行了分析.结果表明:应变速率为10 s-1,变形量为50%时,应力-应变曲线仅为动态回复型,不因温度的变化而改变类型;当变形温度为950 ℃时,变形速率越高,铁素体晶粒越大;而当变形温度为850℃时,这种差别比较小.说明在变形速率不太高的情况下,变形温度是影响奥氏体或铁素体晶粒尺寸的主要因素.  相似文献   

5.
在不同变形温度(275~350℃)和应变速率(5~25s~(-1))下,采用单道次大变形量(80%)轧制ZK60镁合金,研究了变形温度和应变速率对合金显微组织和拉伸性能的影响。结果表明:随着变形温度的升高和应变速率的增大,合金的再结晶体积分数增加;当变形温度不高于300℃时,随着应变速率的增大,再结晶晶粒尺寸先减小后增大,抗拉强度先增后降,伸长率增大;而当温度高于300℃时,再结晶晶粒尺寸先增大后减小再增大,抗拉强度先降低后增大再降低,伸长率增大;在温度300℃,应变速率10s~(-1)下轧制后,所得ZK60镁合金板的拉伸性能最好,抗拉强度和伸长率分别为358 MPa,21.5%。  相似文献   

6.
晶粒尺寸对TC4钛合金超塑性行为及变形机理的影响   总被引:1,自引:0,他引:1  
研究了不同晶粒尺寸(2,8,18μm)T℃4钛合金在温度860~950℃和应变速率5×10-4~5×10-3S-1条件下的超塑性拉伸变形行为及组织演变,分析了晶粒尺寸对该合金超塑性变形行为及变形机理的影响.结果表明:在温度890℃、应变速率5×10-4S-1的变形条件下,细晶(2μm)合金超塑性变形的断后伸长率高达1 300%,而粗晶(18μm)合金的仅为450%;细晶(2~8μm)A金超塑性变形后,平均应变速率敏感指数m值在0.50左右,晶粒保持较好的等轴状,在α/α仅晶界、α晶内均未观察到明显的位错,在α/β晶界附近发现少量的位错;粗晶(18 μm)合金超塑性变形后,m值仅为0.30,晶粒等轴程度下降,在α/α晶界及α晶内均发现大量位错,且在α晶内发现亚晶.  相似文献   

7.
选用Gleeble-3500型热模拟试验机在变形温度330~450℃、应变速率10-2~10 s-1、压缩变形量60%条件下对2219铝合金进行热压缩试验,研究了其在热变形过程中的动态再结晶行为;通过对试验数据进行分析拟合,建立了以Z参数表示的热变形特征参数模型,基于改进Avrami方程的动态再结晶动力学模型以及以变形温度、应变速率表示的再结晶晶粒尺寸模型.结果表明:在低应变速率和高变形温度下,2219铝合金更易于发生动态再结晶;根据动态再结晶动力学模型,最佳热加工条件为应变速率0.1 s-1、温度360℃,此时2219铝合金的动态再结晶程度最高;动态再结晶晶粒尺寸模型预测精度较高,线性相关系数达0.95.  相似文献   

8.
采用Gleeble-1500型热模拟试验机对AZ61镁合金在变形温度250~400℃、应变速率0.001~10 s-1条件下进行热压缩试验,研究了合金的热压缩变形行为,得到了其加工图,并将得到的最佳变形工艺成功应用于轧制成形。结果表明:合金在变形温度250~400℃、应变速率10 s-1的变形条件下具有较高的能量耗散效率,该工艺参数范围为合金的最佳变形工艺;在该工艺参数范围内进行轧制变形可获得组织均匀、力学性能优异的镁合金板材,其平均晶粒尺寸在3~10μm之间,抗拉强度和伸长率则分别在292.9~329.7 MPa和21.4%~27.5%之间。  相似文献   

9.
铸态42CrMo钢热压缩变形时的动态再结晶行为   总被引:1,自引:0,他引:1  
基于Gleeble-1500型热模拟试验机进行热压缩试验,通过对试验数据进行线性回归分析推导出了铸态42CrMo钢热压缩变形的本构方程,同时探讨了热压缩变形参数对显微组织的影响。结果表明:在相同的变形温度(850~1 150℃)下,该钢变形后的显微组织随着应变速率的增大逐渐变细,在5s-1时达到最细;在相同的应变速率(0.1~5s-1)下,显微组织随着变形温度的升高逐渐变细后再粗化,在1 050℃时马氏体板条最细;在相同的应变速率(1~5s-1)和变形温度(900~1 050℃)下,随着变形量的增加,再结晶晶粒尺寸均得到了显著细化;在温度为1 050℃、应变速率为5s-1、应变为0.6时热压缩后晶粒的细化效果最为显著。  相似文献   

10.
在变形温度300~500℃、应变速率0.0005~0.5 s-1下,采用Gleeble 3800型数控式热-力物理模拟试验机对WE43镁合金进行热压缩试验,研究了该合金的热变形行为,建立了真应变为0.6时的热加工图,并结合显微组织演变确定WE43镁合金的最佳热加工工艺参数范围.结果表明:WE43镁合金的真应力随变形温度的降低或应变速率的增大而增大,峰值应力对应的真应变随应变速率的降低或变形温度的升高而减小;WE43镁合金最佳的热塑性加工区间为应变速率0.005~0.05 s-1、变形温度410~500℃,此时合金的热变形软化机制主要为动态再结晶,晶粒尺寸较均匀,平均晶粒尺寸小于100μm.  相似文献   

11.
铸态铝锰黄铜的超塑性及超塑成形   总被引:1,自引:0,他引:1  
对铸态铝锰黄铜的超塑性进行了试验与生产应用的研究。结果表明:铸态合金的晶粒尺寸平均为140μm,在不经任何预处理的情况下,具有良好的超塑性。用铸态毛坯作滑阀零件的超塑成形表现出良好的成形性和空洞的焊合性,超塑成形后经适当的恢复热处理,其力学性能和耐磨性均优于锻态毛坯的超塑成形零件。  相似文献   

12.
在不同的变形温度(600~1250℃)下,以3×10-3s-1的应变速率对试样进行拉伸直至断裂。绘制出高温塑性曲线,分析变形温度对耐候钢高温塑性的影响。耐候钢的第Ⅲ脆性区出现在700~850℃,脆性区间温度范围较窄;900~1150℃为最佳塑性区间。  相似文献   

13.
研究了应变速率对奥氏体中高锰钢塑性的影响。结果表明:室温拉伸,中锰钢伸长率由低应变速率10^-3S^-1时的22.8%增加到高应变速率10^3S^-1时的67.4%,增加2倍;高锰钢伸长率由低应变速率10^-3S^-1时的49.5%增加到高应变速率10^3S^-1时的64.4%,增加30%。中高锰钢高应变速率增塑效应,主要与孪生变形大量启动有关,其断裂机制由低应变速率的沿晶断裂转化为高应变速率的晶内韧窝韧性断裂。  相似文献   

14.
通过恒温拉伸机对固溶处理与冷轧加工后的SAF2906双相不锈钢进行恒温拉伸试验,分析其在不同条件下超塑性伸长率的变化。利用扫描电镜与透射电镜对其进行内部组织观察,了解其两相比例的变化情况。试验结果表明,SAF2906双相不锈钢中铁素体相(δ相)与奥氏体相(γ相)的两相体积比随固溶温度的变化而改变,随着固溶温度的升高铁素体比例不断上升,其中当铁素体与奥氏体的两相体积比接近1∶1的情况下,SAF2906双相不锈钢展现出良好的超塑性性能;在机械加工方面可以通过提高冷轧压下量的方法提高SAF2906双相不锈钢的超塑伸长率,试验中试样的伸长率随着冷轧变形量的提高而明显增大,当固溶温度为1 100 ℃,冷轧压下量为85%时,变形温度为960 ℃,应变速率为1×103 s1的条件下,SAF2906双相不锈钢伸长率为1 430%。  相似文献   

15.
The superplastic forming and application of GH4169 superalloy are studied. It is shown that for the typical superplastic forming strain rates of 10- 3 s 1 to 10- 4 s -1, the available engineering strains of the fine-grain GH4169 superalloy are always higher than 250% within wide temperature scopes (920 -980℃), and the maximum elongation to failure obtained is 513%. Dynamic grain growth is presented during superplastic deforming for the alloy, and the grain becomes larger with the increase of the strain. A GH4169 fuel manifold of an aerocraft is superplastically formed, and the superplastically formed GH4169 mainfold is tested by 30 MPa hydraulic pressure for 10 min. So some GH4169 alloy complex components can be superplastically formed in the aerospace industry to decrease the costs of fabricating these components.  相似文献   

16.
目前, 对316LN不锈钢在低速率应变下的热变形行为研究很少. 本文选用工业316LN不锈钢, 通过Gleeble-3800热模拟试验机进行了600-1 100 ℃温度下, 应变速率为3×10-3 s-1的热压缩试验, 得到了真应力-应变曲线. 通过分析真应力-应变曲线和试样的微观组织, 得到了如下结论: 1 000 ℃和稍高温度是适于低速率应变下316LN不锈钢加工的温度.  相似文献   

17.
对含不同质量分数(0,0.6%,3%)铜的高铬铁素体钢在650℃和140MPa条件下蠕变前后的组织和蠕变性能进行了研究。结果表明:随着铜含量从0提高3%,钢的蠕变断裂时间从1172h提高到1 620h,蠕变速率从2.2×10-9s-1降低到1.2×10-9s-1;铜的添加有效抑制了对蠕变性能不利的高温δ铁素体相的形成;添加3%铜的试验钢基体内弥散析出了大量尺寸为50~100nm的富铜相,有效抑制了位错的运动,从而提高了该钢的蠕变抗力。  相似文献   

18.
以22MnB5为实验材料,在500~950℃范围内和应变速率为0.01s-1、0.1s-1、1s-1的实验条件下,采用热模拟机Gleeble-1500对硼钢进行热拉伸实验,研究了不同变形条件下硼钢的热流变行为;对拉断后的试样断面进行组织分析,阐述了不同变形条件下硼钢的组织对热流变行为变化的影响。研究表明:硼钢的热变形行为属于典型的动态回复型,其流动应力随着温度的升高而减小,随着应变速率的增大而增大,且温度对流动应力的影响更显著;在500℃、应变速率0.01s-1的条件下,硼钢高温下的热力学行为与上述规律有所差别,其流变应力高于高应变速率下的流变应力。最后根据高温拉伸实验所得数据,构建了22MnB5热变形的本构方程,以此来描述硼钢高温下的热流变行为。  相似文献   

19.
对304奥氏体不锈钢进行拉伸试验,研究了其在高温拉伸变形过程中的锯齿流变行为。结果表明:当应变速率在2×10-4~2×10-3s-1范围内,试验钢发生动态应变时效的温度为773~973K;出现了A、A+B和E三种锯齿波和负的应变速率敏感系数;锯齿形成的有效激活能为212.8kJ.mol-1;铬和锰等置换型溶质原子与运动位错的交互作用使试验钢出现动态应变时效,导致锯齿流变行为的产生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号