首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Benefits and limitations of process diagnostics are investigated for the suspension plasma spraying of yttria-stabilized zirconia thermal barrier coatings. The methods applied were enthalpy probe measurements, optical emission spectroscopy, and in-flight particle diagnostic.It was proved that the plasma characteristics are not affected negatively by the injection of the ethanol based suspension since the combustion of species resulting from ethanol decomposition achieves a gain of plasma enthalpy. Furthermore, the conditions of the suspension injection into the plasma were found to be optimum as a significant content of evaporated powder material could be detected. Regarding the void content and segmentation crack density of the coatings, the in-flight particle diagnostic showed that the spray distance should be dimensioned in a way that the molten particles reach the substrates just before solidification starts.  相似文献   

2.
A color camera optical diagnostic imaging system has been developed for the measurement of temperature and velocity of individual in-flight particles in thermal plasma spray, based on the principle of particle streak velocimetry and two-color thermometry. Radiation spectral analysis of the characteristic behavior of a particle-laden plasma plume was performed to identify an optimal spectral range for accurate temperature measurements over which the powder particles and the interfering thermal plasma gas are discernable. Calibration of the thermal imaging system was carried out using a blackbody furnace with uncertainties less than 1.8%. Extensive experimental measurements were taken with the optical imaging system to obtain the temperature and velocity distributions of YSZ particles in practical plasma spraying applications. The uncertainties of the measured temperature and velocity with a color camera system mostly fluctuate around ±10% in comparison with data obtained from a commercially available measuring system.  相似文献   

3.
This paper presents what is our actual knowledge about sensors, used in the harsh environment of spray booths, to improve the reproducibility and reliability of coatings sprayed with hot or cold gases. First are described, with their limitations and precisions, the different sensors following the in-flight hot particle parameters (trajectories, temperatures, velocities, sizes, and shapes). A few comments are also made about techniques, still under developments in laboratories, to improve our understanding of coating formation such as plasma jet temperature measurements in non-symmetrical conditions, hot gases heat flux, particles flattening and splats formation, particles evaporation. Then are described the illumination techniques by laser flash of either cold particles (those injected in hot gases, or in cold spray gun) or liquid injected into hot gases (suspensions or solutions). The possibilities they open to determine the flux and velocities of cold particles or visualize liquid penetration in the core of hot gases are discussed. Afterwards are presented sensors to follow, when spraying hot particles, substrate and coating temperature evolution, and the stress development within coatings during the spray process as well as the coating thickness. The different uses of these sensors are then described with successively: (i) Measurements limited to particle trajectories, velocities, temperatures, and sizes in different spray conditions: plasma (including transient conditions due to arc root fluctuations in d.c. plasma jets), HVOF, wire arc, cold spray. Afterwards are discussed how such sensor data can be used to achieve a better understanding of the different spray processes, compare experiments to calculations and improve the reproducibility and reliability of the spray conditions. (ii) Coatings monitoring through in-flight measurements coupled with those devoted to coatings formation. This is achieved by either maintaining at their set point both in-flight and certain spray parameters (spray pattern, coating temperature…), or defining a good working area through factorial design, or using artificial intelligence based on artificial neural network (ANN) to predict particle in-flight characteristics and coating structural attributes from the knowledge of processing parameters.  相似文献   

4.
A novel, technically simple imaging system for individual, in-flight particle temperature and velocity measurements for plasma and other thermal spray processes is described. A custom double dichroic mirror is used to add spectral resolving capability to a single, black-and-white, fast-shutter digital charge coupled device (CCD) camera. The spectral double images produced by the individual in-flight particles are processed using specialized image processing algorithms. Particle temperature determination is based on two-color pyrometry, and particle velocities are measured from the length of the particle traces during known exposure times. In this paper, experimental results using the first prototype system are presented. Laboratory tests were performed using rotating pinholes to simulate in-flight particles, and plasma spraying experiments were performed with commercial, standard spraying equipment operated with Al2O3 and NiCrAlY powders. The prototype instrument can be readily used to determine velocity and temperature distributions of individual in-flight particles from the imaged region of interest of the plume. Dividing the imaged area into smaller sections, spatial distributions of particle temperature, velocity, and number of detected particles can be studied. The study aims to develop a technically simple, single imaging instrument, which can provide a visual overview of the spray plume in combination with quantitative evaluation of the most important spray particle parameters.  相似文献   

5.
The interdependence between plasma spray process parameters and porosity of YSZ coating microstructures was investigated with simultaneous consideration of the deposition efficiency. Based on a factorial experimental plan, the argon plasma gas flow, the current, the interaction of argon flow and current, and the spray distance for the Triplex II plasma gun were found to yield the main contributions to porosity as well as to deposition efficiency.Each of these three process parameters has a significant individual effect on the in-flight particle velocities and temperatures. The contribution to the effects on porosity arises almost exclusively from the particle temperature. Regarding the deposition efficiency, the larger contribution originates from the particle velocity.To achieve a targeted high porosity at reasonable deposition efficiency a simple linear regression model was applied yielding an argon flow of 50 slpm and a current of 470 A at a spray distance of 200 mm as the optimum parameter set. The average particle temperature estimated for this optimum is just above the melting temperature. At this setting, a porosity of 17.7% and a deposition efficiency of 32.5% may be expected.At a greater spray distance and lower power density (lower current and/or higher argon plasma gas flow) the deposition efficiency was observed to drop considerably. The cooling of the particles here becomes critical, i.e. the particles are only partly molten. This was verified by an analysis of the density distributions of measured in-flight particle temperatures.  相似文献   

6.
In-flight particle measurements of the surface temperature and velocity are important for understanding of melting behavior of glass particles during in-flight melting by multi-phase AC arc plasma. However, the use of optical pyrometry for particle surface temperature has inevitable uncertainties due to non-thermal emissions signals from the plasma plume. This work presents spectroscopic measurements of the non-thermal signals which were found to be caused mainly by the plasma emissions scattered by the particles and the radiation emitted by vapor. After that, the accuracy of thermal radiation measurement was estimated and surface temperature of in-flight glass particle was corrected.  相似文献   

7.
Comparative in-flight measurements of particles plasma sprayed by F4 and Triplex II guns were carried out using the diagnostic systems DPV-2000 and Accuraspray-g3. The comparison of mean particle velocities and temperatures as well as intensity profiles of the plume show a good agreement confirming their accuracy. However, the varying operating principles especially the deceased dimensions of the measurement volumes have to be considered carefully when evaluating the results. Furthermore, some applications of the diagnostic systems DPV-2000 and Accuraspray-g3 are shown. Finally some application limits, which were identified for certain powder compositions at higher plasma power levels will be discussed.  相似文献   

8.
9.
In this article, an attempt has been made to relate the thermoelectric properties of thermal spray deposits of sub-stoichiometric titania to process-induced phase and microstructural variances. The TiO2?x deposits were formed through the in situ reaction of the TiO1.9 or TiO1.7 feedstock within the high-temperature plasma flame and manipulated via varying the amounts of hydrogen fed into in the thermal plasma. Changes in the flow rates of H2 in the plasma plume greatly affected the in-flight particle behavior and composition of the deposits. For reference, a high-velocity oxy-fuel spray torch was also used to deposit the two varieties of feedstocks. Refinements to the representation of the in-flight particle characteristics derived via single particle and ensemble diagnostic methods are proposed using the group parameters (melting index and kinetic energy). The results show that depending on the value of the melting index, there is an inverse proportional relationship between electrical conductivity and Seebeck coefficient, whereas thermal conductivity has a directly proportional relationship with the electrical conductivity. Retention of the original phase and reduced decomposition is beneficial to retain the high Seebeck coefficient or the high electrical conductivity in the TiO2 system.  相似文献   

10.
New developments in the field of thermal spraying systems (increased particle velocities, enhanced process stability) are leading to improved coatings. Innovations in the field of feedstock materials are supporting this trend. The combination of both has led to a renaissance of Fe-based feedstocks. Using modern APS or HVOF systems, it is now possible to compete with classical materials for wear and corrosion applications like Ni-basis or metal-matrix composites. This study intends to give an analysis of the in-flight particle and spray jet properties achievable with two different modern thermal spraying systems using Fe-based powders. The velocity fields are measured with the Laser Doppler Anemometry. Resulting coatings are analyzed and a correlation with the particle in-flight properties is given. The experiments are accompanied by computational fluid dynamics simulations of spray jet and particle velocities, leading to a comprehensive analysis of the achievable particle properties with state-of-the-art HVOF and APS systems.  相似文献   

11.
Suspension plasma spray (SPS) is a thermal spray method in which nanoparticles are injected into the plasma jet with the help of suspension droplets to achieve thin and finely structured nanocoatings. The nanoparticles experience three in-flight stages: injection within the suspension droplets, discharge of the nanoparticle agglomerates after the evaporation of the suspension solvent, and tracking of the nanoparticle or agglomerates during the momentum and heat transfer with the plasma jet before coating. A numerical model is proposed in this paper for nanoparticle injection, discharge, acceleration, heating, melting, and evaporation. Initial values of suspension droplet size and agglomerate size are selected according to typical experimental data. Noncontinuum effects on particle acceleration and heating, known as Knudsen effects, are considered, as well as the influence of evaporation on the heat transfer. After a comparison with the experimental data, this nanoparticle model is applied for zirconia and alumina axially injected into the suspension plasma spray. Trajectory, velocity, and temperature of the in-flight nanoparticles are predicted for different initial sizes ranging from 30 nm to 1.5 μm; the distributions of the particle characteristics for multiple particles in the spray are also presented. The effects of powder size and material, power input, plasma gas flow rate, and standoff distance on the nanoparticle characteristics have been investigated and discussed.  相似文献   

12.
The key phenomena controlling the properties of sprayed coatings are the heat and momentum transfer between the plasma jet and the injected particles. Modern on-line particle monitoring systems provide an efficient tool to measure in-flight particle characteristics in such a way that factors that could affect the coating quality can be identified during the spray process. In this work, the optical sensing device, DPV-2000 from Tecnar, was used for monitoring the velocity, temperature, and diameter of in-flight particles during the spraying of alumina with a Sulzer-Metco F4 plasma torch. Evolution of particle velocity, temperature, diameter, and trajectory showed well-marked trends. Relationships between the position of the in-flight particles into the jet and their characteristics were pointed out, thus delivering valuable information about their thermal treatment. Moreover, a numerical model was developed and predictions were compared with experimental results. A good agreement on particle characteristics was found between the two different approaches.  相似文献   

13.
In cold spraying, powder particles are accelerated by preheated supersonic gas stream to high velocities and sprayed on a substrate. The particle velocities depend on the equipment design and process parameters, e.g., on the type of the process gas and its pressure and temperature. These, in turn, affect the coating structure and the properties. The particle velocities in cold spraying are high, and the particle temperatures are low, which can, therefore, be a challenge for the diagnostic methods. A novel optical online diagnostic system, HiWatch HR, will open new possibilities for measuring particle in-flight properties in cold spray processes. The system employs an imaging measurement technique called S-PTV (sizing-particle tracking velocimetry), first introduced in this research. This technique enables an accurate particle size measurement also for small diameter particles with a large powder volume. The aim of this study was to evaluate the velocities of metallic particles sprayed with HPCS and LPCS systems and with varying process parameters. The measured in-flight particle properties were further linked to the resulting coating properties. Furthermore, the camera was able to provide information about variations during the spraying, e.g., fluctuating powder feeding, which is important from the process control and quality control point of view.  相似文献   

14.
In this article, the trajectories of ceramic and metal particles in plasma spray are calculated by solving related momentum and energy equations. Meanwhile, the spatial distributions, temperatures, velocities, as well as diameters of the particles are measured by employing an online, in-flight particle sensor (DPV2000). The experimental and computational results are in good agreement. It has been found that the particle flying trajectories are dependent on material types and particle diameters, and in a plane vertical to the spraying axis, there is a certain corresponding relationship between the particle diameter and the particle velocity, as well as particle temperature.  相似文献   

15.
High Velocity Oxy-Fuel (HVOF) spray techniques can produce high performance alloy and cermet coatings for applications that require wear resistant surfaces. In HVOF process, the particle velocity and temperature determine the resultant coating properties and in many cases enables a better understanding of the process.The aim of this study is to investigate influences of different oxygen/fuel ratios on velocity and temperature of flying particles as well as properties of the HVOF thermal sprayed WC-CoCr coatings. Particle parameters were recorded just prior to impact on the substrate using in-flight particle diagnostic tool Accuraspray-g3®. Detailed correlation of particle parameters and the coating properties are evaluated in order to deduce particle parameter ranges providing coatings with optimum properties.  相似文献   

16.
大气等离子喷涂(APS)金属时,熔滴不可避免地发生氧化是难以获得粒子间结合充分的致密涂层的主要原因。以FeAl金属间化合物为例,提出一种在粉末中添加亚微米金刚石颗粒引入碳源,以期利用碳在高温下优先氧化的特性抑制等离子喷涂飞行粒子中Fe、Al元素的氧化,获得无氧化物的高温熔滴从而制备低氧含量(质量分数)、粒子间充分结合的FeAl金属间化合物涂层的新方法。采用APS制备Fe Al涂层,研究金刚石的添加对涂层氧含量、碳含量、涂层内粒子间结合质量与硬度的影响规律,探讨FeAl熔滴飞行中的氧化行为。采用商用热喷涂粒子诊断系统测量APS喷涂中的粒子温度,通过SEM与XRD表征了涂层的组织结构,并表征涂层的结合强度与硬度。结果表明,在等离子射流的加热和Fe、Al元素放热反应的联合作用下,飞行中FeAl熔滴的表面温度可达2 000℃以上,满足C原位脱氧的热力学条件。与不含碳的传统Fe Al涂层中的氧含量随喷涂距离的增加而显著增加的规律完全不同,用Fe/Al/2.5C粉末喷涂时涂层中的氧含量随距离的增加而减小,表明飞行中熔滴的氧化得到抑制,实现了C原位脱氧抑制金属元素氧化的自清洁氧化物的效应。FeAl/...  相似文献   

17.
Suspension plasma spray (SPS) is a novel process for producing nano-structured coatings with metastable phases using significantly smaller particles as compared to conventional thermal spraying. Considering the complexity of the system there is an extensive need to better understand the relationship between plasma spray conditions and resulting coating microstructure and defects. In this study, an alumina/8 wt.% yttria-stabilized zirconia was deposited by axial injection SPS process. The effects of principal deposition parameters on the microstructural features are evaluated using the Taguchi design of experiment. The microstructural features include microcracks, porosities, and deposition rate. To better understand the role of the spray parameters, in-flight particle characteristics, i.e., temperature and velocity were also measured. The role of the porosity in this multicomponent structure is studied as well. The results indicate that thermal diffusivity of the coatings, an important property for potential thermal barrier applications, is barely affected by the changes in porosity content.  相似文献   

18.
The influence of secondary hydrogen and current on the deposition efficiency (DE) and microstructure of yttria-stabilized zirconia (YSZ) coatings was evaluated. To better understand the influence of the spray process on coating consistency, a YSZ powder, −125 +44 μm, was sprayed with nitrogen/hydrogen parameters and a 9 MB plasma gun from Sulzer Metco. DE and coating porosity, which were produced using two different spray gun conditions yielding the same input power, were compared. Amperage was allowed to vary between 500 and 560 A, and hydrogen was adjusted to maintain constant power, while nitrogen flow was kept at a fixed level. Several power conditions, ranging from 32 to 39 kW, were tested. Different injection geometries (i.e., radial with and without a backward component) were also compared. The latter was found to produce higher in-flight temperatures due to a longer residence time of the powder particles in the hotter portion of the plasma. Porosity was based on cross-sectional micrographs. In-flight particle temperature and velocity measurements were also carried out with a special sensor for each condition. Test results showed that DE and coating density could vary significantly when a different hydrogen flow rate was used to maintain constant input power. On the other hand, DE was found to correlate very well with the temperature of the in-flight particles. Therefore, to obtain more consistent and reproducible DE and microstructures, it is preferable to maintain the in-flight particle temperature around a constant value instead of keeping a constant input power by adjusting the secondary hydrogen flow rate.  相似文献   

19.
Particle melting is one of the key issues in air plasma spray processing of high temperature ceramics such as Yttria Stabilized Zirconia (YSZ). The significance of assessing, monitoring, and controlling the molten content in spray stream on achieving an efficient process and reproducible coating characteristics and properties is known. This study aims to estimate the molten content of the spray stream (as an ensemble) from experimental measurement of in-flight (individual) particle characteristics. In a previous study by Streibl et al. the presence of melting signature in the particle temperature distribution was observed, which has been confirmed by simulation and through independent experimental observation by Mauer et al. Based on this observation, the particle temperature distribution could be delineated into the different achievable particle states in-flight (unmolten, partially molten, and completely molten) to a first approximation. This in-turn would enable estimation of the molten content in the spray stream. Thus obtained percentage molten content (referred in this study as Spray Stream Melting Index—SSMI) has been observed to correlate well with the experimentally measured deposition efficiency for a wide range of process conditions and feedstock characteristics. The implications of estimating SSMI for other materials and processes are also discussed.  相似文献   

20.
An in-flight properties measurement performed on W particles, injected into thermal plasma generated by an inductively coupled RF plasma torch, is presented. The measured surface properties of the particles along the centerline of the plasma plume are expressed by means of temperature and velocity maps, within the domain formed by individual particle’s diameters and their distances from the torch exit. The influence of some of the processing parameters (plate power, carrier gas flow rate, spray chamber pressure) on particle properties is discussed for both individual particles and the resultant integral spray plume characteristics. The results so obtained appear to confirm the suitability of the RF plasma process for the deposition/production of W coatings/deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号