首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc vacancy (VZn) is successfully introduced into 3D hierarchical ZnIn2S4 (3D‐ZIS). The photo‐electrochemical experiments demonstrate that the charge separation and carrier transfer are more efficient in the 3D‐ZIS with rich VZn. Of note, for the first time, it is found that VZn can decrease the carrier transport activation energy (CTAE), from 1.14 eV for Bulk‐ZIS (Bulk ZnIn2S4) to 0.93 eV for 3D‐ZIS, which may provide a feasible platform for further understanding the mechanism of photocatalytic CO2 reduction. In situ Fourier transform infrared (FT‐IR) results reveal that the presence of rich VZn ensures CO2 chemical activation, promoting single‐electron reduction of CO2 to CO2?. In addition, in situ FT‐IR and CO2 temperature programmed desorption results show that VZn can promote the formation of surface hydroxyl. To the best of current knowledge, there are no reports on the photoreduction of CO2 simply by virtue of 3D‐ZIS with VZn and few literature reports on the photocatalytic reduction of CO2 concerned with CTAE. Additionally, this work finds that surface hydroxyl may play a crucial role in the process of CO2 photoreduction. The work may provide some novel ways to ameliorate solar energy conversion performance and a better understanding of photoreaction mechanisms.  相似文献   

2.
Designing a semiconductor-based heterostructure photocatalyst for achieving the efficient separation of photogenerated electron-hole pairs is highly important for enhancing H2 releasing photocatalysis. Here, a new class of Ni1−xCoxSe2–C/ZnIn2S4 hierarchical nanocages with abundant and compact ZnIn2S4 nanosheets/Ni1−xCoxSe2C nanosheets 2D/2D hetero–interfaces, is designed and synthesized. The constructed heterostructure photocatalyst exposes rich hetero-junctions, supplying the broad and short transfer paths for charge carriers. The close contacts of these two kinds of nanosheets induce a strong interaction between ZnIn2S4 and Ni1−xCoxSe2 C, improving the separation and transfer of photo-generated electron-hole pairs. As a consequence, the distinctive Ni1−xCoxSe2 C/ZnIn2S4 hierarchical nanocages without using additional noble-metal cocatalysts, display remarkable H2-relaesing photocatalytic activity with a rate of 5.10 mmol g−1 h−1 under visible light irradiation, which is 6.2 and 30 times higher than those of fresh ZnIn2S4 nanosheets and bare Ni1−xCoxSe2 C nanocages, respectively. Spectroscopic characterizations and theory calculations reveal that the strong interaction between ZnIn2S4 and Ni1−xCoxSe2 C 2D/2D hetero-interfaces can powerfully promote the separation of photo-generated charge carriers and the electrons transfer from ZnIn2S4 to Ni1−xCoxSe2 C.  相似文献   

3.
Solar-driven conversion of CO2 into high value-added fuels is expected to be an environmental-friendly and sustainable approach for relieving the greenhouse gas effect and countering energy crisis. Metal sulfide semiconductors with wide photoresponsive range and favorable band structures are suitable photocatalysts for CO2 photoreduction. This review summarizes the recent progress on metal sulfide semiconductors for photocatalytic CO2 reduction. First, the fundamentals, mechanisms and some principles, like product selectivity, of photocatalytic CO2 reduction are introduced. Then, according to the elemental composition, the metal sulfide photocatalysts applied for CO2 reduction are classified into binary (CdS, ZnS, MoS2, SnS2, Bi2S3, In2S3,Cu2S, NiS/NiS2, and CoS2), ternary (ZnIn2S4, CdIn2S4, CuInS2, Cu3SnS4, and CuGaS2), and quaternary (Cu2ZnSnS4) systems, in which their crystal structures, photochemical characteristics, and photocatalytic CO2 reduction applications are systematically demonstrated. Especially, the diverse modification strategies for improving the activity and product selectivity of photocatalytic CO2 reduction on these metal sulfides are summarized. Finally, the current challenges and future directions for the development of metal sulfide photocatalysts for CO2 reduction are proposed. This review is expected to serve as a powerful reference for exploiting high-efficiency metal sulfide photocatalysts for CO2 conversion and furthering related mechanism understanding.  相似文献   

4.
Constructing rich defect active site structure for material design is still a great challenge. Herein, a simple surface engineering strategy is demonstrated to construct one-unit-cell ZnIn2S4 atomic layers with the modulated surface energy of S vacancy. Rich surface energy can regulate and control the rich S vacancy, which ensures rich active sites, higher charge density and effective carrier transport. As a result, the ZnIn2S4 atomic layers with rich surface energy affords an obvious enhancement in H2O2 productive rate of 1592.04 µmol g−1 h−1, roughly 14.58 times superior to that with poor surface energy. Moreover, the in situ infrared diffuse reflection spectrum indicates that S vacancy as the oxygen reduction reaction active site is responsible for the critical intermediate *O2 and *OOH, corresponding to two-electron oxygen reduction reaction. This study provides a valuable insight and guidance for constructing controllably defects to achieve highly efficient H2O2 production.  相似文献   

5.
Electrochemical CO2 reduction under ambient conditions is a promising pathway for conversion of CO2 into value-added products. In recent years, great achievements have been obtained in the understanding the mechanism and development of efficient and selective catalysts for electrochemical CO2 reduction. However, the electrochemical CO2 reduction is still far from practical applications. Based on the gap between current research and practical applications, the state-of-the-art of the theoretical and experiment investigations on different electrocatalysts for the electrocatalysis of CO2 to CH4 is systematically and constructively reviewed. First of all, strategies for enhancing the catalytic activity and selectivity of electrochemical reduction of CO2 to CH4 are also examined in this review. The modulated strategies mainly involve the following aspects: i) tuning the applied potentials, ii) morphology engineering, iii) crystallographic facets engineering, iv) defect engineering, v) alloying. Furthermore, the influence of the electrolyte on the activity and selectivity for electrocatalysis of CO2 to CH4 is also reviewed. This review will build a systematic understanding in the electrochemical CO2 reduction to CH4 and may help to provide new insight for designing and optimizing the catalysts and/or electrolyte.  相似文献   

6.
Hybrid metal oxides with multilayered structures exhibit unique physical and chemical properties, particularly important to heterogeneous catalysis. However, regulations of morphology, spatial location, and shell numbers of the hybrid metal oxides still remain a challenge. Herein, binary Co3O4/ZnO nanocages with multilayered structures (up to eight layers) are prepared via chemical transformation from diverse Matryoshka‐type zeolitic imidazolate frameworks (ZIFs) via a straightforward and scalable calcination method. More importantly, the obtained ZIF‐derived metal oxides (ZDMOs) with versatile layer numbers exhibit remarkable catalytic activity for both gas‐phase CO oxidation and CO2 hydrogenation reactions, which are directly related to the sophisticated shell numbers (i.e., Co3O4‐terminated layers or ZnO‐terminated layers). Particularly, in situ reflectance infrared Fourier transform spectroscopy (DRIFTS) results indicate that the promotional effects of the multilayered structures indeed exist in CO2 hydrogenation, wherein the key reaction intermediates are quite different for five‐layer and six‐layer ZDMOs. For instance, *HCOO is the predominant intermediate over the six‐layer ZDMO; on the contrary, *H3CO is the crucial species over the five‐layer ZDMO. The ZnO/Co3O4 interface should be the active sites for CO2 hydrogenation to *HCOO and *H3CO species, which are ultimately converted to the products (CH4 or methanol). Accordingly, the work here provides a convenient way to facilely engineer multilayered Co3O4/ZnO nanocomposites with precisely controlled shell numbers for heterogeneous catalysis applications.  相似文献   

7.
Artificial photosynthesis, which converts carbon dioxide into hydrocarbon fuels, is a promising strategy to overcome both global warming and energy crisis. Herein, the geometric position of Cu and Ga on ultra-thin CuGaS2/Ga2S3 is oriented via a sulfur defect engineering, and the unprecedented C2H4 yield selectivity is ≈93.87% and yield is ≈335.67 µmol g−1 h−1. A highly delocalized electron distribution intensity induced by S vacancy indicates that Cu and Ga adjacent to S vacancy form Cu–Ga metallic bond, which accelerates the photocatalytic reduction of CO2 to C2H4. The stability of the crucial intermediates (*CHOHCO) is attributed to the upshift of the d-band center of ultra-thin CGS/GS. The C–C coupling barrier is intrinsically reduced by the dominant exposed Cu atoms on the 2D ultra-thin CuGaS2/Ga2S3 in the process of photocatalytic CO2 reduction, which captures *CO molecules effectively. This study proposes a new strategy to design photocatalyst through defect engineering to adjust the selectivity of photocatalytic CO2 reduction.  相似文献   

8.
Photoreduction carbon dioxide (CO2) and water (H2O) into valuable chemicals is a huge potential to mitigate immoderate CO2 emissions and energy crisis. To date, tremendous attention is concentrated on the improvement of independent CO2 reduction or H2O oxidation behaviors. However, the simultaneous control of efficient electron and hole utilization is still a huge challenge due to the complex cascade redox reactions. Here, a proton turnover exists in the whole CO2 photoreduction process is discovered, which is defined as the pivot to concatenate the hole and electron behaviors. As a demonstration of the concept, the efficient activated hydrogen (*H) production centers of copper (Cu) and rapid hydrogenation centers of nickel (Ni) are coupled by an alloying strategy, and the proton turnover behaviors could be directly determined by adjustment of the molar ratios of CuxNiy. Moreover, Cu3Ni1–TiO2 exhibits the highest electron selectivity of 93.7% for methane (CH4) production with a rate of 175.9 µmol g−1 h−1, while Cu1Ni5–TiO2 reaches up to the highest carbon monoxide (CO) electron selectivity and generation rate at 84.4% and 164.6 µmol g−1 h−1, respectively. Consequently, the experimental and theoretical analysis all clarify the predominate proton turnover effect during the overall CO2 photoreduction process, which directly determines the categories and generated efficiency of C-based products by regulating variable reaction pathways. Therefore, the revelation of the proton turnover pivot could broaden the new sights by bidirectional optimization of dynamics during the overall CO2 photoreduction system, which favors the efficient, selective, and stable photocatalytic CO2 reduction with H2O.  相似文献   

9.
Rational design of effective catalysts with both high activity and selectivity is highly significant and desirable for hydrogenation reaction. In this paper, for the first time an efficient approach to controllably construct 1D metal nanowires (NWs) coated with hydroxide (NixM(OH)2 (M = Mn, Fe, Co, Cu, and Al)) membranes as highly active and selective hydrogenation catalysts is reported. The optimized Ni32Cu(OH)2 membrane coated Pt3Ni nanowires show much enhanced selectivity of 87.9% for the hydrogenation of cinnamaldehyde to hydrocinnamaldehyde instead of hydrocinnamyl alcohol, in contrast with the pristine Pt3Ni nanowires and Pt3Ni nanowires on Ni(OH)2 membranes. The enhanced selectivity of Pt3Ni@Ni32Cu(OH)2‐2 NWs is ascribed to confinement/poisoning effects of the coated Ni32Cu(OH)2 membranes as well as the intimate interaction between the Pt3Ni NWs and Ni32Cu(OH)2 membranes, as confirmed by X‐ray photoelectron spectroscopy. The coated structures also show good stability after five recycle runs. The present work highlights the importance of surface engineering for the design of multicomponent composites with desirable activity and selectivity toward hydrogenation reaction and beyond.  相似文献   

10.
Uniform SnO2 nanorod arrays have been deposited at low temperature by plasma‐enhanced chemical vapor deposition (PECVD). ZnO surface modification is used to improve the selectivity of the SnO2 nanorod sensor to H2 gas. The ZnO‐modified SnO2 nanorod sensor shows a normal n‐type response to 100 ppm CO, NH3, and CH4 reducing gas whereas it exhibits concentration‐dependent n–p–n transitions for its sensing response to H2 gas. This abnormal sensing behavior can be explained by the formation of n‐ZnO/p‐Zn‐O‐Sn/n‐SnO2 heterojunction structures. The gas sensors can be used in highly selective H2 sensing and this study also opens up a general approach for tailoring the selectivity of gas sensors by surface modification.  相似文献   

11.
Photocatalytic selective oxidation of 5-hydroxymethylfurfural (HMF) coupled H2 production offers a promising approach to producing valuable chemicals. Herein, an efficient in situ topological transformation tactic is developed for producing porous O-doped ZnIn2S4 nanosheets for HMF oxidation cooperative with H2 evolution. Aberration-corrected high-angle annular dark-field scanning TEM images show that the hierarchical porous O-ZIS-120 possesses abundant atomic scale edge steps and lattice defects, which is beneficial for electron accumulation and molecule adsorption. The optimal catalyst (O-ZIS-120) exhibits remarkable performance with 2,5-diformylfuran (DFF) yields of 1624 µmol h−1 g−1 and the selectivity of >97%, simultaneously with the H2 evolution rate of 1522 µmol h−1 g−1. Mechanistic investigations through theoretical calculations show that O in the O-ZIS-120 lattice can reduce the oxidation energy barrier of hydroxyl groups of HMF. In situ attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) results reveal that DFF* (C4H2(CHO)2O*) intermediate has a weak interaction with O-ZIS-120 and desorb as the final product. This study elucidates the topotactic structural transitions of 2D materials simultaneously with electronic structure modulation for efficient photocatalytic DFF production.  相似文献   

12.
How to develop an efficient photocatalyst with high activity and high selectivity is the biggest challenge limiting the application of photocatalysis. A reasonable design of the nanoreactor model is an effective strategy. Herein, a series of Pt nanoparticles coated with hexagonal boron nitride (Pt@h-BN) nanoreactors highly dispersed on a photochemically inert carrier, Al2O3 substrate, are synthesized. The results show that as the number of h-BN coating layers increases, the selectivity of photocatalysis is altered from nearly 100% CO2-to-CO to nearly 100% CO2-to-CH4, and the optimized space-time yield of CH4 is up to 184.7 μmol g(Pt)−1 h−1 with three-layer coating. The in situ characterizations reveal the cleavage of the CO on Pt to be the rate determining step and the existence of the key intermediate CO2 species on the surface of Pt@h-BN facilitates CH4 formation. Notably, combined with detailed simulation calculations, this work reveals that the confinement effect in Pt@h-BN attributes the electrons mobility behavior and alleviate the interaction of CO Pt. What is more, the change of the reaction site is the essence for the sudden alternation. This work will bring a new insight to the selective catalysis of noble metals in the gas-solid phase.  相似文献   

13.
Strengthening the interface interaction between metal and support is an efficient strategy to improve the intrinsic activity and reduce the amount of noble metal. Amorphization of support is an effective approach for enhancing the metal-support interaction due to the numerous surface defects in amorphous structure. In this work, a Pd/a-MnO2 electrocatalyst containing ultrafine and well-dispersive Pd nanoparticles and amorphous MnO2 nanosheets is successfully synthesized via a simple and rapid wet chemical method. Differing from the crystal counterpart (Pd/c-MnO2), the flexible structure of amorphous support can be more favorable to electron transfer and further enhance the metal-support interaction. The synergism between Pd and amorphous MnO2 results in the downshift of the d-band center, which is beneficial for the desorption of critical intermediates both in oxygen reduction reaction (ORR) and in ethylene glycol oxidation (EGOR). Due to the lower *.OH desorption energy of Pd/a-MnO2 surface, the rapid dissociation of *OH from Pd facilitates the formation of H2O in ORR, thus demonstrating superior ORR performance comparable to Pt/C. For EGOR, the presence of amorphous MnO2 promotes the formation of adsorbed OH species, which accelerates the desorption of intermediate CO from Pd sites, and thus exhibits excellent EGOR activity and stability.  相似文献   

14.
Direct and complete electro-oxidation of ethanol to CO2 is highly desirable for the commercialization of the direct ethanol fuel cells but is challenging. Current electrocatalysts (mainly Pt, Pd) for ethanol oxidation reaction (EOR), unfortunately, still suffer from low CO2 selectivity and rapid performance deterioration. In this study, a new Pt/α-PtOx/WO3 electrocatalyst containing amorphous PtOx structures is successfully synthesized via a facile hydrothermal reaction following Ar atmosphere annealing. The migration of lattice oxygens in the WO3 during the annealing process is confirmed as the mechanism for the formation and manipulation of amorphous interfaces containing PtOx species in the Pt/α-PtOx/WO3 electrocatalyst. The obtained Pt/α-PtOx/WO3 with tunable amorphous PtOx interfaces favors the desorption of poisoning EOR intermediates (such as CO) and high CO2 selectivity. Therefore, the state-of-art of the Pt/α-PtOx/WO3 exhibits excellent EOR activity (2.76 A mg–1), stability (47.99% of the initial activity preserved after 3600 s), and particularly high CO2 selectivity (reached 21.9%, higher than most reported values for Pt or other noble metals based EOR catalysts). This study may provide a new strategy to improve the EOR performance of metal-based catalysts and to rationally design and prepare other high-performing electrocatalysts via engineering the amorphous interfaces.  相似文献   

15.
The topology and chemical functionality of metal–organic frameworks (MOFs) make them promising candidates for membrane gas separation; however, few meet the criteria for industrial applications, that is, selectivity of >30 for CO2/CH4 and CO2/N2. This paper reports on a dense CAU-10-H MOF membrane that is exceptionally CO2-selective (ideal selectivity of 42 for CO2/N2 and 95 for CO2/CH4). The proposed membrane also achieves the highest CO2 permeability (approximately 500 Barrer) among existing pure MOF membranes with CO2/CH4 selectivity exceeding 30. State-of-the-art atomistic simulations provide valuable insights into the outstanding separation performance of CAU-10-H at the molecular level. Adsorbent–adsorbate Coulombic interactions are identified as a crucial factor in the design of CO2-selective MOF membranes.  相似文献   

16.
Photosensitive structures based on single crystals of the ZnIn2S4 ternary compound were fabricated and studied for the first time. The optoelectronic properties of this compound and corresponding structures were analyzed using the results of measurements of the optical-absorption spectra of ZnIn2S4 crystals, steady-state current-voltage characteristics, and photosensitivity of the structures at T=300 K. It is concluded that surface-barrier structures and heterojunctions based on ZnIn2S4 can be used as wide-band photodetectors of natural optical radiation.  相似文献   

17.
Joule-level pulses from an etalon tuned CO2-TEA laser with an ~ 4GHz intraline tuning range have been used to pump a large number of new CH3OH FIR laser lines. FIR wavelength measurements, pump laser offsets which produced FIR laser lines and pump laser offsets at which CH3OH absorption lines were observed are reported. Identifications are proposed for most of the absorption lines, and an attempt to identify the FIR laser lines is described.  相似文献   

18.
We obtained laser action from the CH2DOD molecule optically pumped by CO2 laser radiation. Eight lasing transitions were identified as originating from CH2DOD; an additional 21 transitions also lased, but were assigned to the CH2DOH molecule, and 2 to CH3OH, even though the isotopic purity of the sample was given as 98%. The relative intensity, relative polarization and frequency of all the lines were measured. The eight lines are distributed between 145.8 μm and 479.2 μm.  相似文献   

19.
Reverse water-gas shift (RWGS) reaction is the initial and necessary step of CO2 hydrogenation to high value-added products, and regulating the selectivity of CO is still a fundamental challenge. In the present study, an efficient catalyst (CuZnNx@C-N) composed by Zn single atoms and Cu clusters stabilized by nitrogen sites is reported. It contains saturated four-coordinate Zn-N4 sites and low valence CuNx clusters. Monodisperse Zn induces the aggregation of pyridinic N to form Zn-N4 and N4 structures, which show strong Lewis basicity and has strong adsorption for *CO2 and *COOH intermediates, but weak adsorption for *CO, thus greatly improves the CO2 conversion and CO selectivity. The catalyst calcined at 700 °C exhibits the highest CO2 conversion of 43.6% under atmospheric pressure, which is 18.33 times of Cu-ZnO and close to the thermodynamic equilibrium conversion rate (49.9%) of CO2. In the catalytic process, CuNx not only adsorbs and activates H2, but also cooperates with the adjacent Zn-N4 and N4 structures to jointly activate CO2 molecules and further promotes the hydrogenation of CO2. This synergistic mechanism will provide new insights for developing efficient hydrogenation catalysts.  相似文献   

20.
Exploring cheap and efficient cocatalysts for enhancing the performance of photocatalysts is a challenge in the energy conversion field. Herein, 2D ultrathin Ti3C2 nanosheets, a kind of MXenes, are prepared by etching Ti3AlC2 with subsequent ultrasonic exfoliation. A novel 2D/2D heterojunction of ultrathin Ti3C2/Bi2WO6 nanosheets is then successfully prepared by in situ growth of Bi2WO6 ultrathin nanosheets on the surface of these Ti3C2 ultrathin nanosheets. The resultant Ti3C2/Bi2WO6 hybrids exhibit a short charge transport distance and a large interface contact area, assuring excellent bulk‐to‐surface and interfacial charge transfer abilities. Meanwhile, the improved specific surface area and pore structure endow Ti3C2/Bi2WO6 hybrids with an enhanced CO2 adsorption capability. As a result, the 2D/2D heterojunction of ultrathin Ti3C2/Bi2WO6 nanosheets shows significant improvement on the performance of photocatalytic CO2 reduction under simulated solar irradiation. The total yield of CH4 and CH3OH obtained on the optimized Ti3C2/Bi2WO6 hybrid is 4.6 times that obtained on pristine Bi2WO6 ultrathin nanosheets. This work provides a new protocol for constructing 2D/2D photocatalytic systems and demonstrates Ti3C2 as a promising and cheap cocatalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号