首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
研究了烧结温度和保温时间对反应硼化烧结制备FeWB基陶瓷的影响。利用X射线衍射,扫描电镜和能谱仪对FeWB基陶瓷烧结过程中的相转变,微观组织以及反应机理进行了表征。结果表明,FeWB硬质相是通过W+Fe_2B=FeWB+Fe和Fe B+W=FeWB两种方式合成的,并且反应生成的FeWB晶粒呈等轴形貌。在800~1150℃之间,FeWB基陶瓷的密度骤然升高,这与Fe_2B相的熔化有关。在1300℃时,由于W2B相的存在,会使FeWB相转变为Fe_7W_6相,从而使密度进一步升高。随着烧结温度的提高,通过液相烧结制备的金属陶瓷表现出相对均匀的微观结构,而且原位合成的FeWB颗粒会发生长大。为了获得较高的致密度,FeWB基陶瓷的烧结温度应控制在1150~1250℃之间。其次,适当的增加铁和硼铁的含量有利于烧结的致密化。  相似文献   

2.
Mo_2FeB_2基金属陶瓷的相变及其显微组织演变研究Ⅰ:相变   总被引:1,自引:1,他引:0  
本文运用XRD和DSC等研究了Mo2FeB2基金属陶瓷在不同烧结温度下的相变规律。结果表明:Mo2FeB2基金属陶瓷随烧结温度的升高依次有Fe2B相、Mo2FeB2相、共晶液相L1(γ-Fe+Fe2B)和液相L2(γ-Fe+L1+Mo2FeB2)的生成,其中Mo2FeB2相由Mo与Fe2B的固相反应合成,Mo与FeB反应合成Mo2FeB2相的可能性较小。在固相烧结过程中,由于反应合成的Mo2FeB2相的体积膨胀,金属陶瓷在固相烧结阶段相对密度增加有限。金属陶瓷在液相L1烧结阶段快速基本致密,表现出相对密度的突变,液相L2对金属陶瓷致密化无贡献。  相似文献   

3.
ZrO_2是一种重要的结构和功能材料,其热膨胀系数与Zr W2O8的负膨胀系数绝对值相近,两者合理调配可以得到任意正、零、负膨胀的陶瓷基复合材料。以ZrO_2陶瓷为基体、Al2O3为烧结助剂,采用两条工艺路线制备ZrO_2/Zr W2O8陶瓷基复合材料:(1)以ZrO_2和Zr W2O8为原料,直接混合然后分别在1200℃和1215℃热压烧结制备复合材料;(2)以ZrO_2(过量)和WO3为原料,采用原位反应法分别在1200℃和1215℃合成负膨胀Zr W2O8陶瓷,然后在相同温度下热压烧结制备复合材料。重点研究不同制备工艺路线(直接混料法或原位反应法+热压烧结),以及在同一种制备方法下、不同热压烧结温度对低膨胀ZrO_2/Zr W2O8陶瓷基复合材料组织形貌、密度和Zr W2O8分解程度的影响。结果表明,无论采用哪种工艺路线,都能制备密度较高的ZrO_2/Zr W2O8陶瓷基复合材料。采用"原位反应+热压烧结法"制备复合材料的密度要高于"直接混料+热压烧结法"制备的复合材料;且Zr W2O8分解程度也较低。直接混料粉在1200℃热压3 h,或者在1215℃热压6 h,所得复合材料的密度约为5.20 g/cm3。  相似文献   

4.
以钒铁粉、石墨粉、铁粉和氮气为原料,采用粉末冶金技术合成了V(C,N)颗粒增强铁基复合材料,从热力学、热分析、致密化和微观结构等方面对该复合材料进行了研究.结果表明,在烧结温度范围内,发生了FeV+C+N2=V(C,N+Fe反应,合成了V(C,N)硬质相;制备的复合材料在1200℃烧结时,其密度达到最大值;复合材料主要相为V(C,N)和γ-Fe,所合成的硬质相V(C,N)颗粒细小,在铁基体中分布均匀.  相似文献   

5.
采用传统固相烧结法制备了钠过量的0.9PbZr0.52Ti0.48O3-0.1NaNbO3(PZT-NN)压电陶瓷,研究了烧结温度对PZT-NN陶瓷晶体结构及其电学性能的影响。XRD结果表明,不同温度烧结的PZT-NN陶瓷均为单一钙钛矿结构,在1125~1150℃温区烧结时,陶瓷发生了由四方相向正交相的相变。随烧结温度进一步升高,压电常数d33、介电常数εr以及剩余极化强度Pr均呈递减趋势,烧结温度为1125℃的PZT-NN陶瓷具有较好的电学性能:d33=218pC/N,εr=851,tanδ=0.02。PZT-NN陶瓷的相对密度随烧结温度的升高而增大,在1150℃时达到95%,钠过量的NaNbO3加入使PZT陶瓷的致密化烧结温度降低了50~150℃。  相似文献   

6.
借助XRD、DTA等分析手段,研究了快淬Fe78Si9B13非晶带的热稳定性,分析了高压烧结条件对球磨非晶粉末烧结获得的块体合金相对密度和晶粒尺寸的影响。结果表明:该非晶合金中,a—Fe相初始晶化温度为469℃,Fe2B第二相初始析出温度为509℃;在P=5.5GPa高压烧结条件下,随着烧结功率Pw的增加,块体合金的a-Fe相晶粒尺寸D逐渐增大,在10.3~14.2nm之间;块体合金的相对密度也随烧结功率Pw升高而增大,当Pw=1207W时,获得了相对密度为99.6%的a—Fe单相纳米晶块体合金,其饱和磁化强度Js=1.52T,矫顽力Hc=1.9kA/m。  相似文献   

7.
为获得细晶TiAl合金及有效减少传统铸造带来的内部缺陷,采用真空热压烧结工艺制备了Ti-44Al-2Cr-4Nb-0.2W-0.2B合金,研究了烧结温度对TiAl合金微观组织及力学性能的影响。结果表明:Ti、Al元素粉末反应合成后,经XRD检测,3种烧结温度(1150、1240、1300℃)烧结后的合金主要由γ-TiAl和α_2-Ti_3Al_2种基体相组成,随着烧结温度的增加,γ相含量增加,α_2相则减少;结合SEM观察发现,改变烧结温度可获得TiAl合金不同典型组织,其中1150℃烧结合金为近γ组织、1240℃烧结为双态组织、1300℃烧结为近片层组织,烧结温度的升高使得合金组织愈发均匀;配合EDS分析,烧结温度的升高有助于Nb元素在基体相中的扩散,同时合金密度随烧结温度的升高逐步增大,当烧结温度升至1300℃,合金的密度达到4.419g/cm~3;通过力学性能检测,在1240℃烧结制备的TiAl合金组织为细小的双态组织,显示出较好的综合力学性能,其显微硬度为5270 MPa,在高温压缩时展示出良好的抗压强度。  相似文献   

8.
以Ga_2O_3掺杂量(质量分数)为3%的ZnO-Ga_2O_3混合粉体为原料,采用热压烧结法制备GZO陶瓷。通过XRD、SEM、阿基米德排水法和四探针法对烧结试样的物相组成、显微结构、密度和电阻率等进行分析表征。结果表明:外加压力能有效降低GZO陶瓷烧结致密化温度;当外加压力为18 MPa时,随烧结温度升高,烧结体的密度和电导率增大;当烧结温度达1150℃时,烧结体密度和电导率达到最大值;但当烧结温度继续增大时,由于晶粒粗化和Zn元素挥发导致试样中气孔长大,试样致密度与导电性呈下降趋势。此外,ZnO-Ga_2O_3混合粉体在烧结温度较低时(1050℃),Ga_2O_3与ZnO固相反应生成ZnGa_2O_4立方尖晶石相;随着烧结温度升高,ZnGa_2O_4将与ZnO继续反应,生成与ZnO六方纤锌矿结构呈共格关系的复杂化合物ZnxGa_2O_(x+3),并且化合物化学式中x值随着烧结温度的升高而增加,化合物晶体结构逐渐接近ZnO六方纤锌矿结构。  相似文献   

9.
在非均相沉淀法制备的Fe-Mo包覆Si_3N_4陶瓷粉末中添加助剂MgO-Y_2O_3进行常压烧结,采用X线衍射仪(XRD)、电镜扫描(SEM)等方法研究了不同温度下Mo元素对该Si_3N_4陶瓷相组成、显微结构和力学性能等方面的影响。结果表明:Mo元素与Fe及Si_3N_4反应生成Fe_3Mo_3N化合物,温度升高其分解为金属Fe相与MoSi_2,同时组织中出现大量液相促使晶型发生转变并实现液相烧结。该材料在1 650℃时维氏硬度(1507)为最高,在1700℃时密度(3.821 3 g/m^3)抗弯强度(908.2 MPa)、断裂韧性(12.08 MPa·m^(1/2))为最高,当烧结温度为1 750℃时,金属Fe相仍得以保留,生成了极大颗粒MoSi_2,材料微观结构恶化,密度、性能迅速下降,所以最佳烧结温度控制在1 700℃左右。  相似文献   

10.
可加工AlN-BN复合陶瓷的制备   总被引:1,自引:0,他引:1  
以碳热还原法合成的 AlN 粉末和市售 BN 粉末为原料,添加 5%Y2O3 为烧结助剂,利用无压烧结制备 AlN-15BN复合陶瓷,研究了烧结温度对 AlN-15BN 复合陶瓷相变、致密度、微观结构以及性能的影响,结果表明:Y2O3 可与 AlN粉末表面的 Al2O3 发生反应生成液相促进烧结,随着烧结温度的升高,复合陶瓷的致密度、热导率和硬度逐渐增加,片状的 BN 形成的卡片房式结构会阻碍复合陶瓷的收缩和致密。在 1 850℃烧结 3 h,可以制备出相对密度为 86.4%,热导率为104.6 W?m-1?K-1,硬度为 HRA56.2的 AlN-15BN复合陶瓷。研究表明,通过添加加工性能良好的 BN制备可加 AIN-BN复合陶瓷,是解决 AIB 陶瓷复杂形状成形问题的一个重要途径。  相似文献   

11.
The WC-Co/(Ti, W)C graded cemented carbide was prepared by spark plasma sintering. The substrate is WC-8Co, and the hard layer is (Ti, W)C solid-solution. The effects of sintering temperature and holding time on the microstructure and properties of graded cemented carbide were analyzed. The hard layer is mainly formed by dissolving WC in the Co-phase and then by solid-solution reaction with TiC. As the sintering temperature increases, the migration rate of WC increases. When the holding time is 5 min, the thickness and the W content of the (Ti, W)C solid-solution hard layer increases with the increasing of sintering temperature. The thickness of the (Ti, W)C solid-solution can reach 51 ± 2 μm at the sintering temperature of 1700 °C for the holding time of 5 min. The hardness of hard layer surface increases first and then decreases with the increasing of sintering temperature. The Vickers hardness is the highest at 1600 °C, which can reach HV0.221.53GPa. As the holding time increases, the thickness of the solid-solution hard layer increases, but the rate of growth decreases. As the thickness increases, the difference in the W element concentration between the solid-solutions of the same pitch decreases along the layer depth direction, and W element concentration in the entire hard layer increases. The oxidation behavior of graded cemented carbide at 400 °C and 600 °C was investigated. The (Ti, W)C hard layer has superior oxidation resistance relative to the WC-Co substrate.  相似文献   

12.
本文以(Ti,W,Mo,Nb)(C,N)-(Co,Ni)基金属陶瓷材料为研究对象,研究烧结温度对金属陶瓷的成分、微观组织和力学性能的影响,初步探讨成分、微观组织与材料强度的关系。研究结果表明:烧结温度对(Ti,W,Mo,Nb)(C,N)-(Co,Ni)基金属陶瓷组织特征有显著的影响;合金的总碳(Ct%)随着烧结温度的提高而降低,当烧结温度达到1490℃时,合金总碳的急剧降低,导致合金组织中出现脱碳相(η相),从而使得合金的硬度(HV30) 、断裂韧性(KIC)和抗弯强度(TRS)降低;1470℃烧结温度下,(Ti,W,Mo,Nb)(C,N)-(Co,Ni)基金属陶瓷合金的硬度(HV30) 、断裂韧性(KIC)和抗弯强度(TRS)的匹配最佳,表现为在实际应用工况下的综合切削性能最优。  相似文献   

13.
In this study, two types of Ti(C0.7,N0.3)-based cermet cutting tool materials (Ti(C,N)–Mo–Ni–Co, named as TMNC, and Ti(C,N)–WC–Mo–Ni–Co–TaC–HfC, named as TWMNCTH) were fabricated by the hot pressed sintering process at different temperatures (from 1380 °C to 1500 °C) for different holding times (from 30 min to 60 min) in a vacuum atmosphere and at a compressive stress of 32 MPa. The polished surface and the fracture surface of the two types of cermets were observed by a scanning electron microscope (BSE/SEM) and energy dispersive spectrometry (EDS), and the relationships among sintering processes, mechanical properties and microstructure were discussed. The experimental results showed that the sintering temperature and holding time both had a great influence on the flexural strength and a small effect on the hardness and the fracture toughness of the two types of cermets. The two cermets both had the optimal comprehensive mechanical properties when they were sintered at 1400 °C for 30 min. The sintering temperature and holding time also had a great influence on the microstructure of the two cermets, and the grain sizes increased when the sintering temperature varied from 1400 °C to 1500 °C and the holding time varied from 30 min to 60 min. The properties and microstructure of the two cermets were also compared. The results indicated that the cermet TWMNCTH had a lower flexural strength, a similar value of fracture toughness, a higher hardness and a thicker rim in the microstructure.  相似文献   

14.
Ti(CN)-based cermets were synthesized from Ti(CN)WCMo2CTaCNiCo composite powders by vacuum-low pressure sintering. The phase evolution and the formation of core–rim structure in Ti(CN)-based cermets were systemically investigated during difference reaction stages at 950–1450 °C. The results show that the secondary carbides such as Mo2C and TaC are begun to dissolve at 950 °C, finished at 1150 °C, and the solution temperature of WC phase is range from 1150 to 1300 °C, which are result in increase of the cermets lattice constant. At the same time, the inner rim is also formed, and Ti(CN)-based cermets are composed of (Ti, W, Mo, Ta)(CN) and Ni/Co solid solution phase. While at 1350 °C, it was found that the outer rim began to precipitate from the liquid phase with the metal binder. With increase of sintering temperature, mechanical properties of cermets improved obviously were related intimately to the increase of outer rim thickness.  相似文献   

15.
Fine-grained tungsten heavy alloys (WHAs) were successfully produced using the high-energy ball milling assisted spark plasma sintering (SPS) method. The effects of increasing sintering temperatures on the microstructure and mechanical properties of the alloy were studied in detail. The hardness of the alloy was found to continuously decrease from 79.3 to 63.8 HRA. In contrast, the bending strength continuously increased from 353.6 to 954.5 MPa. W grain size increased with increased sintering temperature. The temperature ranges from 1000 to 1100 °C and 1150 to 1200 °C were a period of rapid growth of W grain. According to the color change in the scanning electron microscope (SEM) image, the W alloy microstructure were classified into white W grains, off-white W-rich particles, dark grey matrix γ-(Ni, Fe, W), as well as pitch-black W- and O-rich particles. The bending fracture of the alloy mainly displays the features of intergranular fracture. The microporosity of different sizes was distributed on the bending fracture, and grew with increased sintering temperature.  相似文献   

16.
Tungsten heavy alloys (90W–6Ni–4Mn) were prepared through spark plasma sintering (SPS) using micron-sized W, Ni, and Mn powders without ball milling as raw materials. The effects of sintering temperature on the microstructure and mechanical properties of the 90W–6Ni–4Mn alloys were investigated. SPS technology was used to prepare 90W–6Ni–4Mn alloys with relatively high density and excellent comprehensive performance at 1150–1250 °C for 3 min. The 90W–6Ni–4Mn alloys consisted of the W phase and the γ-(Ni, Mn, and W) binding phase, and the aγerage grain size was less than 10 µm. The Rockwell hardness and bending strength of alloys first increased and then decreased with increasing sintering temperature. The best comprehensiγe performance was obtained at 1200 °C, its hardness and bending strength were HRA 68.7 and 1162.72 MPa, respectiγely.  相似文献   

17.
铝电解用NiFe2O4-Cu金属陶瓷惰性阳极的制备   总被引:16,自引:2,他引:16  
以高温固相合成法合成的NiFe2O4陶瓷粉体和金属Cu粉为原料, 采用冷压-烧结法制备了Cu含量在5%~20%之间的NiFe2O4-Cu金属陶瓷惰性阳极, 研究了烧结气氛和烧结温度对其物相组成、微观形貌和基本物理性能的影响. 结果表明 通过控制烧结气氛中氧分压在NiO和Cu2O的离解反应平衡氧分压之间, 可以制备出具有目标物相组成的NiFe2O4-Cu金属陶瓷; 烧结温度和保温时间对所得NiFe2O4-Cu金属陶瓷的相对密度有较大影响; NiFe2O4和Cu之间的不润湿性限制了NiFe2O4-Cu金属陶瓷烧结温度的提高和保温时间的延长, 在保证金属相分布均匀且不溢出的前提下, 所制备的NiFe2O4-Cu金属陶瓷的相对密度较小; 金属相Cu含量越高, NiFe2O4-Cu金属陶瓷最高烧结温度越低、最长保温时间越短, 从而相对密度越低、孔隙率越高; 除了尽量降低金属相含量外, 还可向NiFe2O4-Cu金属陶瓷中添加其他金属如Ni和Co等, 以改善陶瓷相与金属相之间的润湿性, 以提高烧结温度, 进而提高其相对密度和耐腐蚀性能.  相似文献   

18.
This paper studied the densification behavior of nanocrystalline composite powders of 93W–4.9Ni–2.1Fe (wt.%) and 93W–4.9Ni–2.1Fe–0.03Y synthesized by sol-spray drying and hydrogen reduction process. The X-ray diffraction (XRD) analysis showed that γ-(Ni, Fe) phase was formed in the final obtained powders. Powders morphology characterized by scanning electron microscope (SEM) showed that the 93W–4.9Ni–2.1Fe nanocrystalline composite powders exhibited larger agglomeration and grain size compared with the 93W–4.9Ni–2.1Fe–0.03Y nanocrystalline composite powders. Both kinds of green compacts can obtain full density if sintered at 1410 °C for 1 h. When sintering temperature was above 1410 °C, the sintering density for both compacts decreased rapidly. In addition, the sintering density, densification rate and grain coarsening rate of 93W–4.9Ni–2.1Fe compacts were higher than those of 93W–4.9Ni–2.1Fe–0.03Y. The effect of trace yttrium on the densification behavior of nanocrystalline composite powders was also discussed.  相似文献   

19.
采用放电等离子烧结技术原位合成了TiB增强Ti?1.5Fe?2.25Mo复合材料,研究了烧结温度对复合材料微观组织和力学性能的影响规律。结果表明,随着烧结温度的升高,钛合金中 TiB 晶须的长细比迅速减小;然而,复合材料的相对密度及TiB的体积含量随着烧结温度的升高而不断增大。由于TiB晶须长细比的减小会导致复合材料强度的降低,而复合材料的相对密度及TiB体积含量的增大又会带来复合材料强度的增加,因此,在这两种因素的共同作用下,最终导致 TiB/Ti?1.5Fe?2.25Mo复合材料的弯曲强度随着烧结温度的升高而缓慢增大。在烧结温度为1150°C 时,TiB/Ti?1.5Fe?2.25Mo复合材料具有最大的弯曲强度1596 MPa。  相似文献   

20.
93W-5.6Ni-l.4Fe tungsten heavy alloy was fabricated by mechanical alloying process using elemental powders of tungsten, nickel and iron, followed by sintering at temperatures of 1445~1485°C under hydrogen atmosphere. The tungsten heavy alloy sintered using mechanically alloyed powders showed finer tungsten particles about 5~18 μm with high density above 99% at shorter sintering time than that fabricated by conventional liquid-phase sintering process. Charpy impact energy of mechanically alloyed tungsten heavy alloy increased with increasing the matrix volume fraction and with decreasing the W/W contiguity. The high strain rate dynamic deformation behavior of tungsten heavy alloys using torsional Kolsky bar test exhibited different fracture modes dependent on microstructure. While the brittle intergranular fracture mode was dominant when the tungsten particles were contiguously interconnected in tungsten heavy alloys solid-state sintered below 1460°C, the ductile shear fracture mode was dominant when the tungsten particles were surrounded by ductile matrix phase in tungsten heavy alloys liquid-phase sintered above 1460°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号