首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 966 毫秒
1.
In this study, the new electrocatalyst of platinum support on polypyrrole-functionalized graphene (GNS–PPy/PtNPs) is reported. The polypyrrole-functionalized graphene (GNS–PPy) is constructed first with graphene nanosheets (GNS) and polypyrrole (PPy) particles by constant potential deposition. And then PtNPs are deposited on the surface of GNS–PPy by cyclic voltammetry. The as-prepared GNS–PPy/PtNPs is characterized by scanning electron microscopy, energy-dispersive spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. The prepared GNS–PPy/PtNPs catalyst is employed for methanol oxidation reactions. Compared with GNS/PtNPs and PPy/PtNPs, the GNS–PPy/PtNPs has higher catalytic activity (508 mA/mg), better stability, and stronger poisoning-tolerance (I f/I b = 4.18) due to high dispersion of PtNPs on large surface of GNS–PPy as well as synergic effect among the GNS, PPy particles, and PtNPs. The experimental results indicate that GNS–PPy/PtNPs may be an ideal candidate catalyst for direct methanol fuel cell.  相似文献   

2.
A novel SnO2/graphene composite has been synthesized via an in situ chemical synthesis method, in which single crystal SnO2 nanosheets are uniformly grown on graphene support. The as-prepared products were characterized by X-ray diffraction, field emission scanning electron microscope, transmission electron microscope, Thermogravimetric analyses and Nitrogen adsorption/desorption. When used as an anode material for lithium ion batteries, the SnO2/graphene composite exhibits an enhanced reversible lithium storage capacity and good cyclic performance. The first discharge and charge capacities are 1,366 and 975 mAh g?1, respectively. After 100 cycles, the reversible discharge capacity is still maintained at 451 mAh g?1 at the current densities of 100 mA g?1, indicating that it’s a promising anode material for high performance lithium ion batteries.  相似文献   

3.
FeOOH/reduced graphene oxide (rGO) composites have been synthesized by a facile hydrothermal method. The morphology and structure of the obtained products were examined by scanning electron microscope, Raman, X-ray diffraction, thermo gravimetric analysis, and BET. The results show that the FeOOH nanorods were formed on graphene sheets by oxidation of graphene oxide rather than the O2 in air, and CH3COONa benefited the growth of FeOOH rods but is not necessary. The products were about 150 nm long obtained with the existence of CH3COONa, while 50 nm long without CH3COONa. The FeOOH/rGO generated with CH3COONa showed capacitance of 501.71 F/g at current density of 2 A/g in 1 mol/L NaOH, while that generated without CH3COONa showed higher specific capacitance of 537.14 F/g. The difference may be related to the amount of rGO, for the former one contained 82.61 wt% FeOOH while the later one contained 66.13 wt% FeOOH, which indicates the quantity of rGO and the their combination played an important role in the performance of the electrode materials.  相似文献   

4.
Highly conductive PPy/graphene nanosheets/rare earth ions (PPy/GNS/RE3+) composites were prepared via in situ polymerization with p-toluenesulfonic acid as a dopant and FeCl3 as an oxidant. The effects of GNS and RE3+ on the electrical conductivity of the composites were investigated. The results showed that the GNS as a filler had effect on the conductivity of PPy/GNS/RE3+ composites, which played an important role in forming a conducting network in PPy matrix. The microstructures of GNS and PPy/GNS/RE3+ were characterized by the SEM and TEM examinations. It was found that GNS and PPy nanospheres formed a uniform composite with the PPy nanospheres absorbed on the GNS surface and/or filled between the GNS. Such uniform structure together with the observed high conductivities afforded high specific capacitance when used as supercapacitor electrodes. A specific capacitance of as high as 238 F/g at a current density of 1 A/g was achieved over the PPy/GNS/Eu3+ composite.  相似文献   

5.
An excellent PPy/NiFe2O4/CS microwave absorbing materials with a three-layer core–shell structure, was synthesized successfully by two reaction steps of solvothermal reaction and in situ polymerization. The surface morphology, phase structure and chemical components of the composite have been characterized by a scanning electron microscope, X-ray diffraction and X-ray photoelectron spectroscope. The results suggest that the surface of CS is covered by NiFe2O4 completely and PPy wraps the obtained NiFe2O4/CS successfully. The conductivity and the saturation magnetization (Ms) of the resulting PPy/NiFe2O4/CS composites are 0.38 S/cm and 46 emu/g, respectively. The vector network analysis shows the composite performs better microwave absorbing ability than that of CS and NiFe2O4/CS. The maximum reflection loss of the composite with 1.97 mm coating thickness is ?53 dB at 10.5 GHz and the bandwidth of reflection loss less than ?10 dB is 3.4 GHz (8.9–12.3 GHz). This ternary composite with light weight, thin thickness and strong absorbing capacity can be an attractive candidate in the field of microwave absorption.  相似文献   

6.
The MnO/graphene hybrid nanocomposites were prepared by an in situ reduction method. The MnO2 nanorods were attached on the graphene oxides (GOs) to form the MnO2/GO nanocomposites, which were reduced to the MnO/graphene hybrid under argon atmosphere. As the anode material for the lithium ion batteries, the MnO/graphene electrodes delivered a high initial charge capacity up to 747 mAh g?1 and a stable capacity of 705.8 mAh g?1 after 100 cycles, which is much superior to pure MnO with initial charge capacity of 456 mAh g?1 and the stable capacity of 95.6 mAh g?1 after 100 cycles. The scanning electron microscope images of the MnO/graphene hybrid nanocomposites after cycling demonstrated that the graphene could prevent the MnO from aggregating during the charge/discharge process.  相似文献   

7.
In this article, three-dimensional (3D) heterostructured of MnO2/graphene/carbon nanotube (CNT) composites were synthesized by electrochemical deposition (ELD)-electrophoretic deposition (EPD) and subsequently chemical vapour deposition (CVD) methods. MnO2/graphene/CNT composites were directly used as binder-free electrodes to investigate the electrochemical performance. To design a novel electrode material with high specific area and excellent electrochemical property, the Ni foam was chosen as the substrate, which could provide a 3D skeleton extremely enhancing the specific surface area and limiting the huge volume change of the active materials. The experimental results indicated that the specific capacitance of MnO2/graphene/CNT composite was up to 377.1 F g?1 at the scan speed of 200 mV s?1 with a measured energy density of 75.4 Wh kg?1. The 3D hybrid structures also exhibited superior long cycling life with close to 90% specific capacitance retained after 500 cycles.  相似文献   

8.
The Ba0.859 Ca0.141 Zr0.106 Ti0.894 (BCZT) nano-particles were modified by polyimide (PI) through a chemical coating method. And the PI@BCZT/polyvinylidene fluoride (PVDF) flexible composite films were fabricated by solution casting method. The transmission electron microscopy and scanning electron microscopy results show that the nano-particles is about 50 nm, PI is uniformly coated on the surface of BCZT nano-particles about 7–10 nm as well as there are uniform and improved dispersion in the matrix after modification. A series of dielectric properties were carried out. The results show the 50 vol% composites own a remarkably enhanced dielectric permittivity (εr?=?130) at 100 Hz. After modification, the breakdown strength has increased from 20 to 96 kV mm?1 and the loss tangent is reduced from 1.8 to 0.2 at 100 Hz compare with un-modified composites in 40 vol% dopant. With the increase of dopant, ferroelectricity of composites can be enhanced. The optimal residual polarization is 40 vol% PI@BCZT composites, which possess 1.025 μC/cm2 under 50 kV/mm external electric field. In addition, after modification, thermo-gravimetric analysis exhibits the degradation temperature Td5% and Td10% of PI@BCZT/PVDF composites can be enhanced about 5–10?°C and show better thermal stability than un-modified composites.  相似文献   

9.
The mixed spinel-perovskite multiferroic composites of xNiFe2O4-(1 ? x)BaTiO3 (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) have been prepared by sol–gel method. The structure and morphology of the composites were examined by means of X-ray diffraction and transmission electron microscope. High-resolution transmission electron microscope image indicates a clear view of ferrite and ferroelectric phase. Moreover, we observed a fine interface between the two phases, where the coupling effect of ferrite and ferroelectric phase happened. The composites show excellent ferromagnetic and ferroelectric properties. The saturation magnetization (Ms) reaches to 24.139 emu/g for x = 0.6 at room temperature, the magnetization is about 2.37 emu/g for x = 0.6 when the temperature decreases to 90 k, and the polarization reaches to 3.75 μC/cm2 for x = 0.1. Frequency dependent variations of dielectric constant and loss tangent for xNiFe2O4-(1 ? x)BaTiO3 were studied in detail.  相似文献   

10.
Nitrogen-doped graphene/Co–Ni layered double hydroxide (RGN/Co–Ni LDH) is synthesized by a facile co-precipitation method. Transmission electron microscopy images indicated that the formation of Co–Ni(OH)2 nanoflakes with the good dispersion anchored on the surfaces of the nitrogen-doped graphene sheets. The nitrogen-doped graphene composites delivered the enhanced electrochemical performances compared to the pure Co–Ni LDH due to the improved electronic conductivity and its hierarchical layer structures. The high specific capacitance of 2092 F g?1 at current density of 5 mA cm?2 and the rate retention of 86.5% at current density of 5–50 mA cm?2 are achieved by RGN/Co–Ni LDH, higher than that of pure Co–Ni LDH (1479 F g?1 and 76.5%). Moreover, the two-electrode asymmetric supercapacitor, with the RGN/Co–Ni LDH composites as the positive electrode and active carbon as the negative electrode material, exhibits energy density of 49.4 Wh kg?1 and power density of 101.97 W kg?1 at the current density of 5 mA cm?2, indicating the composite has better capacitive behavior.  相似文献   

11.
In the present study, we synthesize nanoneedle structures of MnO2/graphene nanocomposites (N-RGO/MnO2) and birnessite-type MnO2/graphene nanocomposites (B-RGO/MnO2). The morphologies and microstructures of as-prepared composites are characterized by X-ray diffractometry, field-emission scanning electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Our characterizations indicate that nanoneedle structures of MnO2 and birnessite-type MnO2 are successfully formed on graphene surfaces. Capacitive properties of the N-RGO/MnO2 and B-RGO/MnO2 electrodes are measured using cyclic voltammetry, galvanostatic charge/discharge tests, and electrochemical impedance spectroscopy in a three-electrode experimental setup using a 1 M Na2SO4 aqueous solution as the electrolyte. The N-RGO/MnO2 electrode displays a specific capacitance as high as 327.5 F g?1 at 10 mV s?1, which is higher than that of a B-RGO/MnO2 electrode (248.5 F g?1). It is believed that the nanoneedle structure of MnO2 shows excellent electrochemical properties than birnessite-type MnO2 for the electrode materials for supercapacitors.  相似文献   

12.
This paper focuses on the synthesis of polypyrrole/Fe-kanemite nanocomposites by in situ polymerization of pyrrole. Different percentages of PPy/Fe-kan have been prepared and tested for the CO2 adsorption. Fe-exchanged kanemite was prepared using various iron contents and used as an oxidant for the preparation of PPy/Fe-kan nanocomposite. The obtained materials were characterized using various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy, ultraviolet–visible (UV–vis), thermogravimetric analysis TGA, energy dispersive X-ray analysis, scanning and transmission electronic microscopy (SEM, TEM). Based on the XRD and UV–vis analysis, the exchange process leads to the formation of various iron species on the external and internal surface. The thermal stability of PPy/Fe-kan was improved and increased in the following order PPy/Fe-kan (1%) > PPy/Fe-kan (3%) > PPy/Fe-kan (5%) > PPy/Fe-kan (10%) > PPy. SEM and TEM analysis show that the nanocomposite particles have spherical morphology with a high dispersion of the Fe-kanemite in the polymer matrix. CO2 adsorption at 0 and 15 °C was carried using a volumetric method, and the recorded isotherm indicated that the CO2 adsorption capacity of PPy/Fe-kan can be enhanced through modification by polypyrrole. The unmodified Na-kanemite has low CO2 adsorption capacity around 0.05 mmol g?1 at 15 °C, while the PPy/Fe-kan (5%) nanocomposite presented the best CO2 adsorption capacity around 1.7 mmol g?1 at 0 °C under low pressure that is mainly attributable to physical adsorption.  相似文献   

13.
In this study, CdS combined graphene/TiO2 (CdS-graphene/TiO2) composites were prepared by a sol–gel method to improve on the photocatalytic performance of TiO2. These composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM). The photocatalytic activities were examined by the degradation of methylene blue (MB) under visible light irradiation. The photodegradation rate of MB under visible light irradiation reached 90·1% during 150 min. The kinetics of MB degradation were plotted alongside the values calculated from the Langmuir–Hinshelwood equation. 0·1 CGT sample showed the best photocatalytic activity, which was attributed to a cooperative reaction between the increase of photo-absorption effect by graphene and photocatalytic effect by CdS.  相似文献   

14.
An improved method for mass production of good-quality graphene nanosheets (GNs) via ball milling pristine graphite with dry ice is presented. We also report the enhanced performance of these GNs as working electrode in lithium-ion batteries (LIBs). In this improved method, the decrease of necessary ball milling time from 48 to 24 h and the increase of Brunauer–Emmett–Teller surface area from 389.4 to 490 m2/g might be resulted from the proper mixing of stainless steel balls with different diameters and the optimization of agitation speed. The as-prepared GNs are investigated in detail using a number of techniques, such as scanning electron microscope, atomic force microscope, high-resolution transmission electron microscopy, selected area electron diffraction, X-ray diffractometer, and Fourier transform infrared spectroscopic. To demonstrate the potential applications of these GNs, the performances of the LIBs with pure Fe3O4 electrode and Fe3O4/graphene (Fe3O4/G) composite electrode were carefully evaluated. Compared to Fe3O4-LIBs, Fe3O4/G-LIBs exhibited prominently enhanced performance and a reversible specific capacity of 900 mAh g?1 after 5 cycles at 100 and 490 mAh g?1 after 5 cycles at 800 mA g?1. The improved cyclic stability and enhanced rate capability were also obtained.  相似文献   

15.
Carbonaceous materials, one of the most important electrode materials for sea water desalination, have attracted tremendous attention. Herein, we develop a facile and effective two-step strategy to fabricate hierarchical porous carbon nanotubes/graphene/carbon nanofibers (CNTs/G/CNFs) composites for capacitive desalination application. Graphite oxide (GO), Ni2+, and Co2+ are introduced into polyacrylonitrile (PAN) nanofibers by electrospinning method. During the annealing process, the PAN nanofibers are carbonized into CNFs felt, while the CNTs grow in situ on the surface of CNFs and graphite oxide are reduced into graphene simultaneously. Benefiting from the unique hierarchical porous structure, the as-prepared CNTs/G/CNFs composites have a large specific surface area of 223.9 m2 g?1 and excellent electrical conductivity. The maximum salt capacity of the composites can reach to 36.0 mg g?1, and the adsorbing capability maintains a large retention of 96.9% after five cycles. Moreover, the effective deionization time of the CNTs/G/CNFs composites lasts more than 30 min, much better than the commercial carbon fibers (C-CFs) and graphene/carbon nanofibers (G/CNFs) composites. Results suggest that the designed hierarchical porous CNTs/G/CNFs architecture could enhance the capacitive desalination properties of electrode materials. And the possible adsorption mechanism of the novel electrode materials is proposed as well.  相似文献   

16.
A facile method is introduced for incorporating reduced graphene oxide (rGO) into poly(safranine T) (PST) films. First, ST-functionalized GO (ST/GO) was obtained via the absorption of ST on GO in pH 7.0 phosphate buffer solution. Then rGO/PST composite was synthesized by the electropolymerization of ST and the subsequent electrochemical reduction of GO. The as-prepared PST/rGO composite films are characterized using scanning electron microscope, X-ray diffraction, and Fourier transform–infrared spectroscopy. PST/rGO composites possess a microporous structure, which creates enormous amount of pores, and therefore provides larger interfaces for charge carrier. The properties of electrochemical capacitance for PST/rGO composites have also been investigated with cyclic voltammetry (CV) and galvanostatic charge–discharge measurements. The experimental results manifest that the PST/rGO composite showed high capacitance (293.2 F g?1) at 20-mV s?1 CV scan and an excellent cycling stability (8.3% drop after 1000 cycles) in 0.1 M Na2SO4 electrolyte.  相似文献   

17.
以SiO、丁苯橡胶(SBR)及石墨烯为原料,通过高温歧化、机械球磨、喷雾干燥和高温热解制备电化学性能优异的锂离子电池SiO_x/C/石墨烯复合负极材料。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线能谱仪(EDS)和恒流充放电测试仪对复合材料的物相、颗粒形貌及电化学性能等进行表征。结果表明,热解后的SiO_x/C/石墨烯复合负极材料的首次放电容量为1 807mAh/g,100次循环后,可逆容量高达1 349mAh/g,库伦效率为99.1%,循环稳定性远高于SiO_x/C和SiO_x/C/graphene前驱体,具有良好的倍率性能。  相似文献   

18.
A facile and cost-effective method which combines supercritical CO2 and micro-jet exfoliation has been developed for producing graphene nanosheets with high-quality. CO2 molecules can intercalate into the interlayer of graphite because of their high diffusivity and small molecule size in supercritical operation. The tensile stress induced by graphite interfacial reflection of compressive waves exert on the graphite flakes, which lead to further exfoliation of graphite. Scanning electron microscope (SEM), transmission electron microscope (TEM), atomic force microscopy (AFM), Raman spectrum and X-ray diffraction (XRD) are used to identify morphology and quality of the exfoliated graphene nanosheets, which reveal that the graphite was successfully exfoliated into graphene and more than 88% of graphene nanosheets are less than three layers. The yield of graphene nanosheets is about 28 wt% under optimum conditions, which can be greatly improved by repeated exfoliation of the graphene sediment. The pure graphene film has a high conductivity of 2.1 × 105 S/m.  相似文献   

19.
Graphene-based composites represent a new class of materials with potential for many applications. Metal, semiconductor, or any polymer properties can be tuned by attaching it to graphene. Here, a new route for fabrication of graphene based composites thin films has been explored. Graphene flakes (<4 layers) and a well-known semiconductor zinc oxide (ZnO) (<50 nm particle size) have been dispersed in N-methylpyrrolidone and ethanol, respectively. Thin film of graphene flakes is deposited and decorated with ZnO nanoparticles to fabricate graphene/ZnO composite thin film on silicon substrate by electro hydrodynamic atomization technique. Graphene/ZnO composite thin film has been characterized morphologically, structurally and chemically. To investigate electronic behavior of the composite thin film, it is deployed as cathode in a diode device i.e. indium tin oxide/poly (3,4-ethylenedioxythiophene) poly (styrenesulfonate)/polydioctylfluorene-benzothiadiazole/(graphene/ZnO). The J–V analysis of diode device has shown that at voltage of 1 V, the current density in organic structure is at low value of 4.69 × 10?3 A/cm2 and when voltage applied voltage is further increased; the device current density has increased by the order of 200 that is 1.034 A/cm2 at voltage of 12 V.  相似文献   

20.
Na0.5Bi0.5Cu3Ti4O12 (NBCTO)/poly(vinylidene fluoride) (PVDF) composites with various NBCTO volume fractions were prepared via solution mixing and hot pressing process. The structure, morphology, and dielectric properties of the composites were characterized with X-ray diffraction (XRD), thermal-gravimetric analysis (TGA), scanning electron microscope (SEM), and broadband dielectric spectrometer. The dielectric constant (ε) and dielectric loss (tan δ) of the composites were both found to increase with increasing NBCTO volume fraction within the frequency range of 1–106 Hz at room temperature. Relatively high dielectric constant of 79.8 and low loss of 0.21 at 1 kHz were obtained for the NBCTO/PVDF composite with 50 vol% NBCTO. Additionally, theoretical models like Logarithmic mixture rule, Maxwell–Garnet, Effective medium theory, and Yamada model were also employed to predict the dielectric constant of these composites. The values obtained by the EMT model are in close agreement with the experimental values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号