首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Seepage and stress redistribution are the main factors affecting the stability of surrounding rock in high-pressure hydraulic tunnels.In this work,the effects of the seepage field were firstly simplified as a seepage factor acting on the stress field,and the equilibrium equation of high pressure inner water exosmosis was established based on physical theory.Then,the plane strain theory was used to solve the problem of elasticity,and the analytic expression of surrounding rock stress was obtained.On the basis of criterion of Norway,the influences of seepage,pore water pressure and buried depth on the characteristics of the stress distribution of surrounding rocks were studied.The analyses show that the first water-filling plays a decisive role in the stability of the surrounding rock; the influence of seepage on the stress field around the tunnel is the greatest,and the change of the seepage factor is approximately consistent with the logarithm divergence.With the effects of the rock pore water pressure,the circumferential stress shows the exchange between large and small,but the radial stress does not.Increasing the buried depth can enhance the arching effect of the surrounding rock,thus improving the stability.  相似文献   

2.
Switching expansion reduction (SER) uses a switch valve instead of the throttle valve to realize electronically controlled pressure reduction for high pressure pneumatics. A comprehensive and interactive pneumatic simulation model according to the experimental setup of SER has been built. The mathematical model considers heat exchanges, source air pressure and temperature, environmental temperatures and heat transfer coefficients variations. In addition, the compensation for real gas effect is used in the model building. The comparison between experiments and simulations of SER indicates that, to compensate the real gas effect in high pressure discharging process, the thermal capacity of air supply container in simulation should be less than the actual value. The higher the pressure range, the greater the deviation. Simulated and experimental results are highly consistent within pressure reduction ratios ranging from 1.4 to 20 and output air mass flow rates ranging from 3.5 to 132 g/s, which verifies the high adaptability of SER and the validity of the mathematic model and the compensation method.  相似文献   

3.
As for ultra-low permeability reservoir, the adaptability of common nine-spot well pattern is studied through large-scale flat models made by micro-fractured natural sandstone outcrops. Combined with non-linear porous flow characteristics, the concept of dimensionless pressure sweep efficiency and deliverability index are put forward to evaluate the physical models' well pattern adaptability. Through experiments, the models' pressure distribution is measured and on which basis, the pressure gradient fields are drawn and the porous flow regions of these models are divided into dead oil region, non-linear porous flow region, and quasi-linear porous flow region with the help of twin-core non-linear porous flow curve. The results indicate that rectangular well pattern in fracture reservoirs has the best adaptability, while the worst is inverted nine-spot equilateral well pattern. With the increase of drawdown pressure, dead oil region decreases, pressure sweep efficiency and deliverability index increase; meantime, the deliverability index of rectangular well pattern has much more rational increase. Under the same drawdown pressure, the rectangular well pattern has the largest pressure sweep efficiency.  相似文献   

4.
Numerical computation models of air cooling heat transfer and flow behaviors in triangular wavy fin channels(TWFC) were established with structural parameters of fins considered.The air side properties of heat transfer coefficient and pressure drop are displayed with variable structural parameters of fins and inlet velocities of cooling air.Within the range of simulation,TWFC has the best comprehensive performance when inlet velocity vin=4-10 m/s.Compared with those of straight fins,the simulation results reveal that the triangular wavy fin channels are of higher heat transfer performances especially with the fin structural parameters of fin-height Fh=9.0 mm,fin-pitch Fp=2.5-3.0 mm,fin-wavelength λ=14.0-17.5 mm and fin-wave-amplitude A=1.0-1.2 mm.The correlations of both heat transfer factor and friction factor are presented,and the deviations from the experimental measurements are within 20%.  相似文献   

5.
Coatings containing Fe-Si particles were electrodeposited on 3.0wt% Si steel sheets under magnetic fields. The effects of magnetic flux density (MFD), electrode arrangement and current density on the surface morphology, the silicon content in the coatings and the cathode current efficiency were investigated. When a magnetic field was applied parallel to the current and when the MFD was less than 0.5 T, numerous needle-like structures appeared on the coating surface. With increasing MFD, the needle-like structures weakened and were transformed into dome-shaped structures. Meanwhile, compared to results obtained in the absence of a magnetic field, the silicon content in the coatings significantly increased as the MFD was increased for all of the samples obtained using a vertical electrode system. However, in the case of an aclinic electrode system, the silicon content decreased. Furthermore, the cathode current efficiency was considerably diminished when a magnetic field was applied. A possible mechanism for these phenomena was discussed.  相似文献   

6.
Effective thermal performance of oscillating heat pipe (OHP) is driven by inside pressure distribution. Heat transfer phenomena were reported in terms of pressure and frequency of pressure fluctuation in multi loop OHP charged with aqueous Al2O3 and MWCNTs/Al2O3 nanoparticles. The influences on thermal resistance of aqueous Al2O3, MWCNTs as well as the hybrid of them in OHP having 3 mm in inner diameter were investigated at 60% filling ratio. Experimental results show that thermal characteristics are significantly inter-related with pressure distribution and strongly depend upon the number of pressure fluctuations with time. Frequency of pressure depends upon the power input in evaporative section. A little inclusion of MWCNTs into aqueous Al2O3 at 60% filling ratio achieves the highest fluctuation frequency and the lowest thermal resistance at any evaporator power input though different nanofluids cause different thermal performances of OHPs.  相似文献   

7.
Abstract: Two-tier heterogeneous networks (HetNets), where the current cellular networks, i.e., macrocells, are overlapped with a large number of randomly distributed femtocells, can potentially bring significant benefits to spectral utilization and system capacity. The interference management and access control for open and closed femtocells in two-tier HetNets were focused. The contributions consist of two parts. Firstly, in order to reduce the uplink interference caused by MUEs (macrocell user equipments) at closed femtocells, an incentive mechanism to implement interference mitigation was proposed. It encourages femtoeells that work with closed-subscriber-group (CSG) to allow the interfering MUEs access in but only via uplink, which can reduce the interference significantly and also benefit the marco-tier. The interference issue was then studied in open-subscriber-group (OSG) femtocells from the perspective of handover and mobility prediction. Inbound handover provides an alternative solution for open femtocells when interference turns up, while this accompanies with PCI (physical cell identity) confusion during inbound handover. To reduce the PCI confusion, a dynamic PCI allocation scheme was proposed, by which the high handin femtocells have the dedicated PCI while the others share the reuse PCIs. A Markov chain based mobility prediction algorithm was designed to decide whether the femtoeell status is with high handover requests. Numerical analysis reveals that the UL interference is managed well for the CSG femtocell and the PCI confusion issue is mitigated greatly in OSG femtocell compared to the conventional approaches.  相似文献   

8.
The fabrication of copper (Cu) and copper matrix silicon carbide (Cu/SiCp) particulate composites via the sinter-forging process was investigated. Sintering and sinter-forging processes were performed under an inert Ar atmosphere. The influence of sinter-forging time, temperature, and compressive stress on the relative density and hardness of the prepared samples was systematically investigated and subsequently compared with that of the samples prepared by the conventional sintering process. The relative density and hardness of the composites were enhanced when they were prepared by the sinter-forging process. The relative density values of all Cu/SiCp composite samples were observed to decrease with the increase in SiC content.  相似文献   

9.
The effect of substrate doping on the threshold voltages of buried channel pMOSFET based on strained-SiGe technology was studied. By physically deriving the models of the threshold voltages, it is found that the layer which inversely occurs first is substrate doping dependent, giving explanation for the variation of plateau observed in theC-V characteristics of this device, as the doping concentration increases. The threshold voltages obtained from the proposed model are-1.2805 V for buried channel and-2.9358 V for surface channel at a lightly doping case, and-3.41 V for surface channel at a heavily doping case, which agrees well with the experimental results. Also, the variations of the threshold voltages with several device parameters are discussed, which provides valuable reference to the designers of strained-SiGe devices.  相似文献   

10.
The desulfurization ability of refining slag with relative lower basicity (B) and Al2O3 content (B = 3.5-5.0; 20wt%-25wt% Al2O3) was studied. Firstly, the component activities and sulfide capacity (Cs) of the slag were calculated. Then slag-metal equilibrium experiments were carried out to measure the equilibrium sulfur distribution (Ls). Based on the laboratorial experiments, slag composition was optimized for a better desulfurization ability, which was verified by industrial trials in a steel plant. The obtained results indicated that an MgO-saturated CaO-Al2O3-SiO2-MgO system with the basicity of about 3.5-5.0 and the Al2O3 content in the range of 20wt%-25wt% has high activity of CaO (αCaO), with no deterioration of Cs compared with conventional desulfurization slag. The measured Ls between high-strength low-alloyed (HSLA) steel and slag with a basicity of about 3.5 and an Al2O3 content of about 20wt% and between HSLA steel and slag with a basicity of about 5.0 and an Al2O3 content of about 25wt% is 350 and 275, respectively. The new slag with a basicity of about 3.5-5.0 and an Al2O3 content of about 20wt% has strong desulfurization ability. In particular, the key for high-efficiency desulfurization is to keep oxygen potential in the reaction system as low as possible, which was also verified by industrial trials.  相似文献   

11.
Hafnium oxide thin films (HOTFs) were successfully deposited onto amorphous glasses using chemical bath deposition, successive ionic layer absorption and reaction (SILAR), and sol-gel methods. The same reactive precursors were used for all of the methods, and all of the films were annealed at 300℃ in an oven (ambient conditions). After this step, the optical and structural properties of the films produced by using the three different methods were compared. The structures of the films were analyzed by X-ray diffTaction (XRD). The optical properties are investigated using the ultraviolet-visible (UV-VIS) spectroscopic technique. The film thickness was measured via atomic force microscopy (AFM) in the tapping mode. The surface properties and elemental ratios of the films were investigated and measured by scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDX). The lowest transmittance and the highest reflectance values were observed for the films produced using the SILAR method. In addition, the most intense characteristic XRD peak was observed in the diffraction pattern of the film produced using the SILAR method, and the greatest thickness and average grain size were calculated for the film produced using the SILAR method. The films produced using SILAR method contained fewer cracks than those produced using the other methods. In conclusion, the SILAR method was observed to be the best method for the production of HOTFs.  相似文献   

12.
Specimens of Pb1-1.5xLax(Zr0.53 Ti0.47)1-y-zFeyNb2O3 (x = 0, 0.004, 0.008, 0.012, and 0.016, y = z = 0.01) (PZTFN) ceramics were synthesized by a semi-wet route. In the present study, the effect of La doping was investigated on the structural, microstructural, dielectric, piezoelectric, and ferroelectric properties of the ceramics. The results show that, the tetragonal (space group P4mm) and rhombohedral (space group R3c) phases are observed to coexist in the sample at x = 0.012. Microstructural investigations of all the samples reveal that La doping inhibits grain growth. Doping of La into PZTFN improves the dielectric, ferroelectric, and piezoelectric properties of the ceramics. The hys- teresis loops of all specimens exhibit nonlinear behavior. The dielectric, piezoelectric and ferroelectric properties show a maximum response atx 〉 0.012, which corresponds to the morphotropic phase boundary (MPB).  相似文献   

13.
This article focuses on the microstructural evolution and wear behavior of 50wt%WC reinforced Ni-based composites prepared onto 304 stainless steel substrates by vacuum sintering at different sintering temperatures. The microstructure and chemical composition of the coatings were investigated by X-ray diffraction (XRD), differential thermal analysis (DTA), scanning and transmission electron microscopy (SEM and TEM) equipped with energy-dispersive X-ray spectroscopy (EDS). The wear resistance of the coatings was tested by thrust washer testing. The mechanisms of the decomposition, dissolution, and precipitation of primary carbides, and their influences on the wear resistance have been discussed. The results indicate that the coating sintered at 1175℃ is composed of fine WC particles, coarse M6C (M=Ni, Fe, Co, etc.) carbides, and discrete borides dispersed in solid solution. Upon increasing the sintering temperature to 1225℃, the microstructure reveals few incompletely dissolved WC particles trapped in larger M6C, Cr-rich lamellar M23C6, and M3C2 in the austenite matrix. M23C6 and M3C2 precipitates are formed in both the γ/M6C grain boundary and the matrix. These large-sized and lamellar brittle phases tend to weaken the wear resistance of the composite coatings. The wear behavior is controlled simultaneously by both abrasive wear and adhesive wear. Among them, abrasive wear plays a major role in the wear process of the coating sintered at 1175℃, while the effect of adhesive wear is predominant in the coating sintered at 1225℃.  相似文献   

14.
As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments.  相似文献   

15.
Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear analytical model for Fuzhou Basin was established.The peak ground motion acceleration(PGA) and focusing effect with depth were analyzed.Meanwhile,the results by wave propagation of one-dimensional(1D) layered medium equivalent linearization method were added for contrast.The results show that:1) PGA at different depths are obviously amplified compared to the input ground motion,amplification effect of both funnel-shaped depression and upheaval areas(based on the shape of bedrock surface) present especially remarkable.The 2D results indicate that the PGA displays a non-monotonic decreasing with depth and a greater focusing effect of some particular layers,while the 1D results turn out that the PGA decreases with depth,except that PGA at few particular depth increases abruptly; 2) To the funnel-shaped depression areas,PGA amplification effect above 8 m depth shows relatively larger,to the upheaval areas,PGA amplification effect from 15 m to 25 m depth seems more significant.However,the regularities of the PGA amplification effect could hardly be found in the rest areas; 3) It appears a higher regression rate of PGA amplification coefficient with depth when under a smaller input motion; 4) The frequency spectral characteristic of input motion has noticeable effects on PGA amplification tendency.  相似文献   

16.
Abstract: We performed fluidized bed coating ofAl-based nanoeomposite powder-binder suspensions onto polymer substrates. The effects of the type and amount of the binder and nanoparticle additive on the coating process efficiency and coating characteristics were investigated. The efficiency decreased from 52% to 49% as the processing time increased from 15 to 20 min. However, the amount and thickness of the coating also increased as the processing time and amount of the binder were increased. The addition of nanoparticles to the system decreased the thickness of the coating from 222 to 207 μm when polyvinyl alcohol (PVA) was used as a binder. The suspension containing 3wt% R-4410 binder exhibited the greatest efficiency of 60%.  相似文献   

17.
Ternary TiO2/WO3/graphene (TWG) nanocomposites were prepared by a facile salt-ultrasonic assisted hydrothermal method. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption--desorption. Both anatase TiO2 and orthorhombic WO3 formed in the nanocomposites, along with a highly disordered overlay of individual graphene nanosheets. Polyhedral and spherical TiO/and WO3 nanoparticles of uniform size 10-30 nm were densely anchored to the graphene sheets. The maximum specific surface area of the products was 144.59 m2·g^-1. The products showed clear abilities for the removal of Rhodamine B in the absence of illumination. Furthermore, the adsorption activity of the products exhibited only a slight decrease after three successive cycles. The results demonstrate that the ternary nanocomposites could be used as a high-efficiency adsorbent for the removal of environmental contaminants.  相似文献   

18.
Hydroxyapatite/alumina nanocrystalline composite powders needed for various biomedical applications were successfully synthe- sized by sol-gel process. Structural and morphological investigations of the prepared composite powders were performed using X-ray dif- fractometer (XRD), scanning electron microscopy (SEM), X'Pert HighScore software, and Clemex Vision image analysis software. The re- suits show that the crystallite size of the obtained composite powders is in the range of 25 to 90 nm. SEM evaluation shows that the obtained composite powders have a porous structure, which is very useful for biomedical applications. The spherical nanoparticles in the range of 60 to 800 nm are embedded in the agglomerated clusters of the prepared composite powders.  相似文献   

19.
When nuclear plants will reach to decommission stage, a huge amount of concrete should be disposed as radioactive waste. So design methodology for reinforced concrete of nuclear power plants to reduce radioactive wastes in decommission phase has been developed. To realize this purpose (1)Development of raw materials database of cements, aggregates and steel bars on concentration of radioactive target elements, (2)trial production of low activation cement and steel bars based on the material database, and (3)development of tools for estimation and prediction of the amount of radioactive elements in reactor shielding walls have been carried out.
Manufactu cements, low-a crete. After th ring tests by etivation addi at, we devel mixing together with low-activation aggregate, low-activation tives, etc, have been performed to develop low-activation conoped various types (1/10, 1/20, 1/30, …, 1/1000, 1/3000, and 1/10000) of low activation concrete composed of low activation raw materials as very useful shielding material in a nuclear facility. The term"1/10 of low-activation concrete" denotes that the activity reduction rate to ordinary concrete is designed to be 1/10. By adopting some suitable types of low-activation concrete, most of the shielding concrete around ABWR and APWR are classified below clearance level on decommissioning.
To reduce the radioactive concrete, the most effective methodology is not to use the materials of high radio-nuclide content such as coal ash and blast furnace slag, and to use limestone as additives or aggregate. However, concrete uses Portland cement for hardening, therefore, it is difficult to reduce the amount of radioactive concrete unless radio-nuclide content in cement is reduced. So in this study, we tried to develop the new type of low-activation cement by reducing of radio-nuclide as europium and cobalt.  相似文献   

20.
The fabrication of an alumina-metal composite coating onto a carbon steel substrate by using a self-propagating high-temperature synthesis technique was demonstrated. The effects of the type and thickness of the pre-coated layer on the binding structure and surface qual- ity of the coating were systematically investigated. The macrostructure, phase composition, and bonding interface between the coating and the substrate were investigated by scanning electronic microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectrometry (EDS). The diffraction patterns indicated that the coating essentially consisted of α-Al2O3, Fe(Cr), and FeO-Al2O3. With an increase in the thickness of the pre-coated working layer, the coating became more smooth and compact. The transition layer played an important role in enhancing the binding between the coating and the substmte. When the pre-coated working layer was 10 mm and the pre-coated transition layer was 1 ram, a compact structure and metallurgical bonding with the substrate were obtained. Thermal shock test results indicated that the ceramic coating exhibited good thermal shock resistance when the sample was rapidly quenched from 800℃ to room temperature by plunging into water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号