首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soybean meal flour, polyethylene glycol (PEG), sodium hydroxide (NaOH), and a melamine-urea-formaldehyde (MUF) resin were used to formulate soybean meal/MUF resin adhesive. Effects of the adhesive components on the water resistance and formaldehyde emission were measured on three-ply plywood. The viscosity and solid content of the different adhesive formulations were measured. The functional groups of the cured adhesives were evaluated. The results showed that the wet shear strength of plywood bonded by soybean meal/NaOH adhesive increased by 33% to 0.61 MPa after adding NaOH into the adhesive formulation. Addition of PEG reduced the viscosity of the soybean meal/NaOH/PEG adhesive by 91% to 34,489 cP. By using the MUF resin, the solid content of the soybean meal/MUF resin adhesive was improved to 39.2%, the viscosity of the adhesive was further reduced by 37% to 21,727 cP, and the wet shear strength of plywood bonded by the adhesive was increased to 0.95 MPa, which met the interior plywood requirements (≥0.7 MPa). The formaldehyde emission of plywood bonded by the soybean meal/MUF resin adhesive was obtained at 0.28 mg/L, which met the strictest requirement of the China National Standard (≤0.5 mg/L). FTIR showed using the MUF resin formed more  CH2 group in the cured adhesive. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
A New Soy Flour-Based Adhesive for Making Interior Type II Plywood   总被引:1,自引:0,他引:1  
In this study, we developed a formaldehyde-free adhesive from abundant, renewable, and inexpensive soy flour (SF). The main ingredients of this adhesive included SF, polyethylenimine (PEI), and maleic anhydride (MA). The optimum formulation of this adhesive and the optimum hot-press conditions for making plywood were investigated. A three-cycle soak test and a boiling water test (BWT) were employed for evaluating the strength and water-resistance of plywood bonded with this adhesive. Results showed that SF, PEI, MA and sodium hydroxide were all essential components for the adhesive and the SF/PEI/MA weight ratio of 7/1.0/0.32 resulted in the highest water-resistance. When the hot-press temperature was in the range of 140–170 °C, both water-resistance and shear strength of plywood bonded with the adhesive remained statistically the same, except that the dry shear strength of plywood at 170 °C was statistically lower than that at 160 °C. When the hot-press time ranged from 2 to 6 min, the plywood panels at 5 min had the highest boiling water test/wet (BWT/w) shear strength. The plywood panels made at 5 min had a higher dry shear strength than those made at 3 min. Plywood panels bonded with this SF/PEI/MA adhesive exceeded the requirements for interior applications.  相似文献   

3.
The desire to prepare a lower-cost soy-based adhesive has led to an interest in using the abundant and inexpensive soy flour (SF) as a substitute for expensive soy protein isolates (SPI) in wood adhesives. However, the weakness of this adhesive is poor water-resistance and bonding strength due to a low protein content, which limits its application in the wood industry. The objective of this research was to provide a simple and useful approach for improving the adhesion performance of SF-based adhesive by introducing a small addition of melamine-urea-formaldehyde (MUF) resin into the cured system. The optimum addition level of MUF resin, as well as the adhesion performance and conformation change of SF-based adhesive, were investigated. The analytical results indicated that the co-condensed methylene bridges were formed through the reaction of methylol groups of MUF resin with soy units during the hot-press process. The addition of MUF resin, not only significantly decrease the viscosity of SF-based adhesive but also increase its water-resistance and wet shear strength value. The SF-based adhesive containing 20% MUF resin, is a relatively low-cost adhesive, has a reasonable viscosity, and moreover can pass the Chinese Industrial Standard requirement (0.7 MPa) for interior plywood panels.  相似文献   

4.
In this research, two different types of commercial tannins, namely a hydrolysable tannin (chestnut) and a condensed flavonoid tannin (mimosa), were used to prepare two types of soy-based (soy flour (SF) and soy protein isolate) adhesives for making plywood. Thermogravimetric properties (TGA) and its derivative as function of temperature (DTG) of different soy-based adhesive were measured in the range 40°C–300°C. Thermomechanical analysis (TMA) from 25°C to 250°C was done for the different resin formulations. Duplicate three-ply laboratory plywood panels were prepared by adding 300 g/m2 of the adhesives’ total resin solid content composed of SF or isolated soy protein (ISP), urea, chestnut, and mimosa tannin extracts with hexamine as hardener. Based on the results obtained, tannins can improve SF adhesion properties. The TMA showed that chestnut tannin extract appeared to react well with SF, while mimosa tannin extract appeared to react well with ISP. Matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry also showed that among other reactions, the soy protein amino acids reacted with the tannins. Furthermore, delamination and shear strength test results showed the good water resistance of plywood bonded with soy-based tannin modified adhesive.  相似文献   

5.
The phasing out of the use of urea–formaldehyde adhesive in the fabrication of interior‐used hardwood plywood requires development of environmentally friendly bio‐based wood adhesives. We recently reported that phosphorylation of soy flour (SF) using phosphoryl chloride (POCl3) greatly improved the moisture resistance of soy flour adhesive. In the present study, we investigated the effects of inorganic oxidizing agents, such as NaClO2 and Ca(NO2)2, to further improve the wet bonding strength of phosphorylated SF (PSF) wood adhesive. We report that addition of 1.8 % (wet weight basis) Ca(NO2)2 to phosphorylated SF (PSF) adhesive formulation containing 25 % soy flour solids increased the wet bonding strength to greater than 3 MPa at 140 °C hot‐press temperature. The water resistance testing of the glued three‐ply hardwood plywood panels passed the three‐cycle soak/dry test recommended by the American National Standard for Hardwood and Decorative Plywood/Hardwood Plywood and Veneer Association protocol (ANSI/HPVA HP‐1‐2004). Since the process involves only inorganic chemistry and no petroleum‐based chemicals such as formaldehyde or polyamidoamine–epichlorohydrin are used, the PSF + Ca(NO2)2 adhesive is non‐toxic and environmentally safe.  相似文献   

6.
A new, environmentally friendly defatted soy flour-based bio-adhesive was developed by using the cross-linker 1,2,3,4-butanetetracarboxylic acid (BTCA). The reaction between BTCA and defatted soy flour was confirmed by assaying the free amino groups, by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, and 13C nuclear magnetic resonance (13C NMR). Three-ply plywood was fabricated to measure wet shear strength, and the cross-section and thermal behavior of resultant adhesives were characterized in detail. A decrease in the free amino group content, a new ester peak in the FTIR spectra, a weaker resonance at 65.4–76.2 ppm in 13C NMR, and a decrease in crystallinity confirmed that BTCA was successfully crosslinked with defatted soy flour. The resulting crosslinked bio-adhesive showed improved wet shear strength (1.36 MPa) and a reduced sol fraction (24.8%). The crosslinked bio-adhesive displayed enhanced thermal stability, and had a more uniform surface based on thermogravimetric analysis and scanning electron microscopy. The results suggest BTCA can be used to prepare high-performance environmentally friendly defatted soy flour-based bio-adhesives.  相似文献   

7.
We studied the high temperature performance of soy meal processed to different protein concentrations (flour, concentrate, and isolate), as well as formulated soy-based adhesives, and commercial nonsoy adhesives for comparison. No thermal transitions were seen in phenol-resorcinol-formaldehyde (PRF) or soy-phenol-formaldehyde (SoyPF) or in as-received soy flour adhesive during differential scanning calorimetry scans heating at 10?°C/min between 35 and 235?°C. Heat flow rates decreased in the order soy flour (as received)?>?SoyPF?>?PRF?>?emulsion polymer isocyanate (EPI). In thermogravimetric analysis (TGA) scans from 110 to 300?°C at 2?°C/min, total weight loss decreased in the order soy flour (as-received)>SoyPF?>?PRF?>?casein?>?maple?>?EPI. For bio-based materials, the total weight loss (TGA) decreased in the order soy flour (as-received) > concentrate, casein?>?isolate. Dynamic mechanical analysis from 35 to 235?°C at 5?°C/min of two veneers bonded by cured adhesive showed 30–40% decline in storage modulus for maple compared to 45–55% for the adhesive made from soy flour in water (Soy Flour) and 70–80% for a commercial poly(vinyl acetate) modified for heat resistance. DMA on glass fiber mats showed thermal softening temperatures increasing in the order Soy Flour?<?casein?<?isolate?<?concentrate. We suggest that the low molecular weight carbohydrates plasticize the flour product. When soy-based adhesives were tested in real bondlines in DMA and creep tests in shear, they showed less decrease in storage modulus than the glass fiber-supported specimens. This suggests that interaction with the wood substrate improved the heat resistance property of the adhesive. Average hot shear strengths (ASTM D7247) were 4.6 and 3.1?MPa for SoyPF and Soy Flour compared to 4.7 and 0.8?MPa for PRF and EPI and 4.7 for solid maple. As a whole, these data suggest that despite indications of heat sensitivity when tested neat, soy-based adhesives are likely to pass the heat resistance criterion required for structural adhesives.  相似文献   

8.
Bond quality of soy-based phenolic adhesives in southern pine plywood   总被引:1,自引:0,他引:1  
Increased demand for wood adhesives, environmental concerns, and the uncertainty of continuing availability of petrochemicals have led to recent attention on protein-based adhesives. This study was conducted to investigate the glue bond qualities of soy-based phenolic adhesive resins for southern pine plywood. Two types of soy-based resins were formulated and tested. The first was made by cross-linking soy flour with phenol-formaldehyde (pf) resins at neutral pH. The second type was obtained by cross-linking soy flour hydrolyzates with pf resin under alkaline conditions. Plywood bonded with the neutral phenolic soy resins containing 70% soy flour and 30% 1.6 g/cm2 pf without the use of extenders and fillers compared favorably with the traditional southern pine pf glue mixes. Plywood bonded with alkaline phenolic soy resins, containing 40 or 50% 0.5 g/cm2 PF with the addition of extender (19% corn-cob powder), provided better adhesive glue bond properties than traditional southern pine pf glue mixes. These results suggest that soy-based phenolic adhesive resins have potential for the production of exterior southern pine plywood.  相似文献   

9.
In this paper, a series of new environmentally friendly bioadhesives with improved bonding strength were quickly synthesized via urea, sodium dodecyl sulfate (SDS) and propanetriol are mixed with soy isolate protein. The results showed that the bonding strength of the modified adhesives was changed with the increasing content of propanetriol. The maximum dry shear strength of the plywood bonded with the resultant adhesive was increased to 2.45 MPa when the propanetriol content was 20 ml. While the maximum wet shear strength of the plywood bonded with the resultant adhesive arrived 1.32 MPa, which is acceptable for industrial application in plywood fabrication according to the national standards of the People’s Republic of China (≥0.7 MPa). In addition, the orthogonal experiment suggested that the obtained material with pH of 9 for 5 h mixing at the hot pressing temperature of 120 °C exhibited the best comprehensive performance. Also, the FTIR, SEM and DSC measurements showed that the adhesives had a compact structure with stable thermal property.  相似文献   

10.
The impact of jet cooking on shear strength of soy-and-water adhesives was investigated to understand the higher shear strength of commercial soy protein isolates compared to soy flours. Soy flour-based wood adhesives are appealing because of their bio-based content, low formaldehyde emission, and low cost, but their commercial application is limited by low wet cohesive strength. Previous researchers proposed that the process of jet cooking (steam injection with high turbulence followed by rapid cooling) was responsible for the high (~3 MPa) wet shear strength of adhesives made with commercially produced soy protein isolate, using the ASTM D 7998 test. In this work, we show that jet cooking did dramatically increase the wet strength of laboratory-produced, native-state soy protein isolate from 0.6 to 3 MPa, a strength similar to many commercial isolates. Jet cooking was far less effective at developing wet strength of soy flours, but greatly increased the viscosity of virtually all our soy materials. We hypothesize that the benefits of jet cooking are primarily a result of nonequilibrium protein aggregation states because subsequent wet autoclaving of jet cooked soy proteins dramatically decreased wet strength. The dramatic differences in adhesive properties between commercial soy protein isolates and soy flours suggests that the common practice of using results obtained with commercial isolates to predict the performance of soy flour adhesives is inappropriate.  相似文献   

11.
A formaldehyde-free adhesive consisting of soy flour, polyethylenimine, maleic anhydride, and sodium hydroxide was investigated for making randomly oriented strandboard (R-OSB) and oriented strandboard (OSB). The hot-press conditions and the adhesive usage rate were optimized in terms of enhancing internal bond strength (IB), modulus of rupture (MOR), and modulus of elasticity (MOE) of the resulting R-OSB and OSB. The IB, MOR, and MOE were the highest at a hot-press temperature of 170°C, a hot-press time of 4–5 min, and an adhesive usage rate of 7%. The strengths of the OSB panels made with this formaldehyde-free adhesive were compared with those of commercial OSB panels purchased at a local Home Depot store.  相似文献   

12.
In this study, we developed a new formaldehyde-free adhesive prepared by in-situ chlorinating graft copolymerization for plywood. The main ingredients of this adhesive include maleic anhydride (MAH) and high density polyethylene (HDPE) that is MAH grafted onto HDPE (PE-cg-MAH). The reaction between this adhesive and veneer, the optimum formulation to bond veneer and the optimum hot-press conditions to prepare the plywood were investigated. A boiling water test was employed to evaluate the strength and water resistance of plywood bonded with this adhesive. The results showed that the properties of the resulting plywood using PE-cg-MAH as an adhesive can meet the standard of Type I plywood and the optimum hot-press conditions were 160-165 °C and 5 min. When the chlorine contents of PE-cg-MAH was about 3% (wt%), the plywood panels had a higher shear strength after boiling water test above the hot-press conditions.  相似文献   

13.
A new formaldehyde-free wood adhesive from renewable materials   总被引:2,自引:0,他引:2  
A formaldehyde-free adhesive that consists of soy flour (SF) and a new curing agent (CA) was developed and evaluated for making interior plywood. Three types of plywood panels (seven-ply maple/white fir/pine/white fir/pine/white fir/maple, five-ply yellow poplar, and five-ply aspen) were prepared with the SF–CA adhesives and evaluated for their water resistance. The CA was derived from the reaction of epichlorohydrin (ECH) and ammonium hydroxide in water. Effects of the reaction time, reaction temperature, NaOH usage, heat treatment of CA, addition order of reactants in the preparation of the CA, and storage time of the CA on the water resistance of plywood panels bonded with SF–CA adhesives were investigated. The reaction time required for the completion of the reaction significantly decreased as reaction temperatures increased. The addition of NaOH to the SF–CA adhesive improved the water resistance and dry shear strength of the five-ply aspen panels. All plywood panels met the requirements for interior plywood when the CAs were prepared at 45–60 °C no matter whether the CA was heat-treated or not. Mixing ECH and ammonium hydroxide all at once resulted in better water resistance of the resulting plywood panels than adding either of ECH or ammonium hydroxide to the other dropwise. The viscosity of heat-treated CA was comparable to that of untreated CA when the CA was prepared at 50 °C. Both heat-treated and untreated CAs could be stored at room temperature for at least two months without compromising the water resistance of the resulting plywood panels.  相似文献   

14.
Steam explosion lignin phenol formaldehyde (SEL–PF) adhesives were prepared by ternary gradual copolymerization. The parameters for the phenolate of steam explosion lignin (SEL) and preparation of SEL–PF adhesives were optimized. Under the optimum phenolate conditions, the phenolic hydroxyl content of lignin increased by 130%, whilst the methoxyl content was reduced by 68%. The SEL–PF adhesives were used to prepare plywoods by hot-pressing. The pH value, viscosity, solid content, free phenol content and free formaldehyde content of SEL–PF adhesives were investigated. The bonding strengths of the plywoods glued with SEL–PF adhesives were determined. The maximum SEL replacement percentage of phenol reached 70 wt%, and the properties of adhesives and plywoods met the Chinese National Standard (GB/T 14732-2006) for first grade plywood.  相似文献   

15.
Soy protein adhesives with a high solid content (28–39 %) were extracted from soy flour slurry modified with sodium bisulfite (NaHSO3) at different concentrations. 11S‐dominated soy protein fractions (SP 5.4) and 7S‐dominated soy protein fractions (SP 4.5) were precipitated at pH 5.4 and pH 4.5, respectively. The objective of this work was to study the effects of NaHSO3 on adhesion and physicochemical properties of soy protein. The adhesion performance of NaHSO3‐modified SP 4.5 was better than SP 5.4; the wet strength of these two fractions was from 2.5 to 3.2 MPa compared with 1.6 MPa of control soy protein isolate. SDS‐PAGE results revealed the reducing effects of NaHSO3 on soy protein. The isoelectric pH of soy protein decreased as NaHSO3 increased due to the induced extra negative charges (RS‐SO3?) on the protein surface. The rheological properties of soy protein adhesives were improved significantly. Unmodified samples SP 5.4 and SP 4.5 had clay‐like properties and extremely high viscosity, respectively; with 2–8 g/L NaHSO3 modification, both SP 5.4 and SP 4.5 had a viscous cohesive phase with good flowability. Overall, NaHSO3‐modified soy protein adhesives in our study have many advantages over the traditional soy protein isolate adhesive such as better adhesion performance, higher solid content but with good flowability and longer shelf life.  相似文献   

16.
Canola is widely grown in the northern latitudes for its vegetable oil, generating large quantities of residual, low value canola flour used as animal feed. The common wood adhesive poly(diphenylmethylene diisocyanate) (pMDI) should react with the wide variety of functional groups in proteins. Therefore, it would seem that canola flour with added pMDI could be an effective adhesive. Two main questions are addressed in this study: How do the wood adhesive properties of canola flour compare to the better-studied soy flour? How well do proteins, which contain an abundance of functional groups, cure with the very reactive pMDI? These questions were addressed using the small-scale adhesive strength test ASTM D-7998, with various adhesive formulations and bonding conditions for canola flour plus pMDI compared to soy adhesives. The more challenging wet cohesive bond strength was emphasized because the dry strengths were usually very good. Generally, soy adhesives were better than canola ones, as was the polyamidoamine-epichlorohydrin cross-linker compared to pMDI, but these generalizations can be altered by the conditions selected. Three-ply plywood tests supported the small-scale test results.  相似文献   

17.
The desire to make more biobased and lower-cost bonded wood products has led to an interest in replacing some phenol and formaldehyde in wood adhesives with soybean flour. Improved knowledge of the soy protein properties is needed to relate resin chemistry to resin performance before and after wood bonding. To expose the soy protein’s functional groups, it needs to be disrupted, with minimal hydrolysis, to maximize its incorporation into the final polymerized adhesive lattice. The best conditions for alkali soy protein disruption were to maintain the temperature below 100 °C and react the soy flour with sodium hydroxide at pH 9–12 for about 1 hour. A gel permeation chromatography procedure was optimized to determine conditions for selectively breaking down the high molecular weight soy protein fragments that contribute to high adhesive viscosity. This method and extraction data were used to evaluate the reaction of the disrupted soy flour protein with formaldehyde and phenol to provide a stable adhesive. The results were used to develop more economical adhesives that are ideally suited for the face section of oriented strandboard.  相似文献   

18.
A novel adhesive that is solely based on natural materials of defatted soy flour (SF) and magnesium oxide (MgO) has been investigated for preparation of five‐ply plywood panels. The resulting plywood panels met the industrial water‐resistant requirement for interior plywood. In this study, mechanisms by which an aqueous mixture of SF and MgO served as a strong and water‐resistant adhesive for bonding wood were investigated. SF was first fractionated into soy protein isolates (SPI), a water‐soluble fraction, and insoluble carbohydrates (ICs) that were mixed with MgO, respectively, for preparation of maple laminates. The water resistance of the resulting maple laminates was evaluated by a three‐cycle water‐soaking‐and‐drying (WSAD) test and a two‐cycle boiling‐water test (BWT). The mixture of MgO and the soluble fraction was not able to bond maple veneers together. The shear strengths of the resulting maple laminates before and after WSAD and BWT all had the following order: MgO–SPI > MgO–SF > SF only > MgO–IC. The water solubility of SF in the heat‐cured SF–MgO mixture was much lower than that of the heat‐cured SF. We believe that the low water solubility of SF–MgO and close interactions between MgO and soy proteins instead of soy carbohydrates were responsible for the superior strengths and high water resistance of the soy‐MgO adhesive.  相似文献   

19.
In this study, a green adhesive from renewable lignin and tannin was developed with polyethylenimine (PEI) with a method to improve the water resistance of the lignin/tannin adhesive. Lignin polyols were prepared through the liquefaction of oil‐palm empty fruit bunches. The characteristics of the adhesive samples were compared with those of a commercial phenol–formaldehyde resin. Three plywood specimens bonded with the new adhesive showed a very high tensile strength (63.04 MPa) and were very water resistant. The effect of the solid content of the adhesives on the tensile strength and gel time and various weight ratios of PEI on the tensile strength and water resistance of the plywood specimens were evaluated. Thermal stability tests revealed that the lignin polyol–tannin/PEI adhesives had a high heat resistance (360 °C). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43437.  相似文献   

20.
Soy flour adhesives using polyamidoamine-epichlorohydrin (PAE) resin as the curing agent are being used commercially to make bonded wood products. The original studies on the soy-PAE adhesives used purified soy protein isolate, but the much lower cost soy flour is now used commercially. We examined the performance of commercially available soy flours that have their proteins either mainly in their native (90 protein dispersibility index (PDI)) or denatured (70 and 20 PDI) states. We expected that the more native state soy proteins with their better dispersibility would provide better adhesion to wood surfaces and enhanced reaction with PAE resin. Small-scale wood bonding tests showed that neither of these effects was observed without and with a low level of PAE. In these tests, the solids content of the soy formulations had a large influence on adhesive viscosity but little influence on bond strength. Additionally, little difference was observed in any of the adhesive or viscosity properties between the soy flours having either a 0.152 or 0.075?mm (100 or 200 mesh) particle size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号