首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
<正> 用微生物来生产表面活性物质是七十年代后期国际生物工程领城中发展起来的一个新课题。微生物在代谢过程中,常分泌一些生化产物,其分子结构具有亲水和疏水两种组份,如糖脂类、磷脂类及脂蛋白类等。用遗传工程、代谢调节等手段能使这些代谢产物达到相当可观的水平。用微生物生产表面活性剂的优点是,可以引进新的化学基团类型,有些是用化学方法难以合成的,并且所有的生物表面活性剂都是具有能被生物完全降解的优点。另外,生物表面活性剂的无毒性,使得在环境三废处理方面具有较大的相容性。生物表面活性剂具有乳化、破乳、润湿、增溶、发泡、消泡、抗静电、抗腐蚀等功  相似文献   

2.
何海洋  陆利霞  姚丽丽  熊晓辉 《化工进展》2011,30(3):607-611,615
与化学合成的表面活性剂相比微生物产生的生物表面活性剂具有表面活性高、良好的抑菌作用以及环境友好等独特的性质。其中糖脂类生物表面活性剂由于其高产量和多功能生化特性,成为最有发展前途的生物表面活性剂之一。本文综述了糖脂类生物表面活性剂的特性及潜在的应用。  相似文献   

3.
本文对洗涤剂中糖脂类生物表面活性剂相关的专利申请数量、国内外专利申请情况、专利申请人类型、糖脂类生物表面活性剂在洗涤剂中的主要用途和不同种类糖脂生物表面活性剂的应用概况等进行了分析。本文通过对洗涤剂中糖脂类生物表面活性剂的专利技术进展分析,希望能为洗涤剂产品开发和洗涤剂产业绿色发展提供一定的参考。  相似文献   

4.
应用微生物发酵生产生物表面活性剂是70年代后期发展起来的新技术。中科院上海有机化学研究所的科技人员研究开发了以石油组分正烷烃或某些植物油为原料,用节杆菌或产蛋白酵母等微生物菌种发酵生产生物表面活性剂的新技术。制得的品种有槐糖脂和  相似文献   

5.
微生物合成生物表面活性剂研究进展   总被引:2,自引:0,他引:2  
白小平 《化工时刊》2009,23(6):54-56
生物表面活性剂一般是由微生物产生的一类两性分子的表面活性物质。与化学表面活性剂相比,微生物合成的表面活性剂拥有生物降解、环境友好、耐极端环境和低毒性等特点。生物表面活性剂主要包括糖脂、脂肽、脂蛋白、磷脂及中性类脂衍生物等。  相似文献   

6.
越来越多的生产和使用表面活性剂的公司开始寻找石油衍生物的替代品,以实现可持续发展。微生物生产的生物表面活性剂为此提供了一个更有价值的解决方案,因为其通常以可再生资源如糖、植物油、甚至废水为原料,由细菌或酵母菌经过天然发酵工艺而生产出来。而且,这些表面活性剂可完全降解,生态毒性较低。研究最多的生物表面活性剂有鼠李糖脂、槐糖脂、海藻糖脂、纤维二糖脂、甘露糖赤藓糖醇酯、表面活性肽和  相似文献   

7.
生物表面活性剂的合成(一)   总被引:6,自引:0,他引:6  
生物表面活性剂具有优良的表面性能,抗菌、抗病毒、抗肿瘤等药理作用。其最重要的特点是无毒,可完全降解,不会造成环境污染。目前用于生物表面活性剂合成的方法主要有两种:微生物法和酶催化法。文章一一介绍了微生物法中的生长细胞法、代谢控制细胞生长法、休止细胞法、加入前体法和用酶催化合成单酰化甘油脂类、糖脂类、氨基酸类、磷脂类和烷基糖苷类生物表面活性剂的方法。  相似文献   

8.
原油降解菌株AS1筛选自延长油田油水样,对延长轻质原油具有良好降解能力,通过生理生化指标和16SrDNA基因序列分析进行了菌种鉴定,原油降解菌株AS1的16SrDNA基因序列与Pseu-domonas aeruginosa的相似度为99.1%,因而将其命名为P.aeruginosa AS1。该菌株的最适生长温度为37℃,能以延长轻质原油、液体石蜡为唯一碳源生长,并能合成鼠李糖脂类生物表面活性剂,该表面活性剂对柴油、煤油和原油等均有很好的乳化效果,在常温下形成EI24值为100%的乳状液。鉴于P.aerugi-nosa AS1的良好生物属性,该菌株有进一步进行微生物矿场试验的潜力。  相似文献   

9.
生物表面活性剂与化学表面活性剂相比,具有显著的优势:无毒、可生物降解、生态安全以及高表面活性等优点。槐糖脂作为一种生物表面活性剂,广泛的应用于食品、医药、日化及环境保护等领域,有逐渐取代化学表面活性剂的趋势。主要介绍了产槐糖脂的微生物和槐糖脂的生物合成过程,以及槐糖脂在纳米技术中的应用,具有广泛的应用前景。  相似文献   

10.
生物表面活性剂复合体系在强化采油中的应用研究   总被引:3,自引:0,他引:3  
针对大庆油田小井距生物表面活性剂复合体系先导性矿场试验 ,利用自行研制并生产的6 0t鼠李糖脂发酵液 (RH)与其他表面活性剂进行复配 ,优选出了适合于大庆油田小井距的三元复合体系配方。通过对配方的综合性能评价 ,证明RH可以拓宽超低界面张力区域 ,降低表面活性剂的吸附滞留量 ,三元复合体系驱油效率比水驱提高 2 0 %以上。另外 ,在驱油效率相同的情况下 ,降低ORS41用量 5 0 % ,成本核算表明 ,生物表面活性剂三元复合体系成本比原三元复合驱矿场试验化学剂成本节省 30 %以上。  相似文献   

11.
Recently, nanoparticles have become an attractive agent for enhanced oil recovery (EOR). Because much of the work on nanoparticles for enhanced oil recovery is still at the laboratory stage and to gain a better understanding of this technique, it is essential to study the effect of nanoparticles on EOR. In addition, the world is now more environmentally aware, presenting the opportunity to use biosurfactants for EOR. In this paper, the synergistic effect of biosurfactant and nanoparticles on the removal of oil in a glass micromodel was evaluated. In this study, an aqueous solution of emulsan biosurfactant with addition of SiO2 nanoparticles was used as a nanofluid. The emulsan biosurfactant was produced by Acinetobacter calcoaceticus PTCC1318. The production of emulsan was confirmed by FTIR and 1H NMR analysis. According to our results, the use of the mixture of biosurfactant and nanoparticle (nanofluid) permitted a 90% reduction of interfacial tension in comparison with biosurfactant solution alone. Micromodel oil displacement experiments with kerosene showed around 10 and 20% recovery of residual oil after water flooding when the emulsan and nanofluid were injected, respectively. These results are useful in extending the application of nanostructures in ex situ microbial enhanced oil recovery.  相似文献   

12.
Surfactants find applications in a wide variety of industrial processes. Biomolecules that are amphiphilic and partition preferentially at interfaces are classified as biosurfactants. In terms of surface activity, heat and pH stability, many biosurfactants are comparable to synthetic surfactants. Therefore, as the environmental compatibility is becoming an increasingly important factor in selecting industrial chemicals, the commercialization of biosurfactant is gaining much attention. In this paper, the general properties and functions of biosurfactants are introduced. Strategies for development of biosurfactant assay, enhanced biosurfactant production, large scale fermentation, and product recovery are discussed. Also discussed are recent advances in the genetic engineering of biosurfactant production. The potential applications of biosurfactants in industrial processes and bioremediation are presented. Finally, comments on the application of enzymes for the production of surfactants are also made.  相似文献   

13.
王晨伊  刘琦  彭勃  吕静 《化工进展》2019,38(9):4012-4019
表面活性素(surfactin)是一类由革兰氏阳性的枯草芽孢杆菌产生的脂肽(lipopeptide)型生物表面活性剂,因其具有优于化学合成表面活性剂的若干优点,如低毒性、高生物降解性、更好的环境相容性,且在极端环境下稳定性好,在提高石油采收率方面有较好的应用潜力,但是目前只有少数的生物表面活性剂可以大规模生产实现工业化应用。本文介绍了surfactin生物表面活性剂的化学结构和生物合成机制,并对其发酵生产过程的影响因素进行分析,为提高其生产经济性探索不同的策略,例如使用更便宜的原材料、优化培养基组分、优化反应器等,系统论述了surfactin生物表面活性剂的驱油机理和其与化学合成表面活性剂的复配研究,同时针对其应用时的不足之处提出研究新思路。  相似文献   

14.
Traditionally, biosurfactants have been produced from hydrocarbons. Some possible substitutes for microbial growth and biosurfactant production include urban wastes, peat hydrolysate, and agro-industrial by-products. Molasses, a nonconventional substrate (agro-industrial by-product) can also be used for biosurfactant production. It has been utilized by two strains of Bacillus subtilis (MTCC 2423 and MTCC1427) for biosurfactant production and growth at 45°C. As a result of biosurfactant accumulation, the surface tension of the medium was lowered to 29 and 31 dynes/cm by the two strains, respectively. This is the first report of biosurfactant production by strains of B. subtilis at 45°C. Potential application of the biosurfactant in microbial enhanced oil recovery is also presented.  相似文献   

15.
A new biosurfactant producer, Bacillus coagulans, was isolated from soil. Its 24-h-old culture broth had a low surface tension (27–29 mN/m). Optimization of cell growth of this bacterium led to maximal biosurfactant production with glucose or starch as the organic carbon source, a pH in the range 4.0–7.5, and incubation temperatures from 20 to 45°C. The crude biosurfactants obtained after neutralization and lyophilization of the acid precipitate yielded a minimal aqueous solution surface tension value of 29 mN/m and an interfacial tension value of 4.5 mN/m against hexadecane. The critical micelle concentration of the crude biosurfactants was 17 mg/L. Addition of NaCl to the aqueous solution of the crude product caused lowering of surface tension at both the aqueous solution-air and aqueous solution-n-hexadecane interfaces. These results indicate that the biosurfactants obtained have potential environmental and industrial applications and may have uses in microbially enhanced oil recovery.  相似文献   

16.
In the present work, a new strain Pseudomonas indica MTCC 3714 was studied for the production of biosurfactants using various rice‐bran oil industry residues viz. rice‐bran, de‐oiled rice‐bran, fatty acids and waxes. Among all the carbon sources, a maximum reduction in surface tension (26.4 mN/m) was observed when the media were supplemented with rice‐bran and the biosurfactant was recovered using the ultrasonication technique as one of the steps in the extraction process. Biosurfactants were obtained in yields of about 9.6 g/L using rice‐bran as the carbon source. The structure of the biosurfactants as characterized by FT‐IR, NMR (1H and 13C) and LC–MS analysis revealed that the majority of the biosurfactants were di‐rhamnolipids. The biosurfactants produced were able to emulsify various hydrocarbons and showed excellent potential in microbial enhanced oil recovery, as it was able to recover kerosene up to 70 % in a sandpack test.  相似文献   

17.
Isolate MS16 obtained from diesel contaminated soil, identified as Enterobacter sp. using 16S rRNA gene analysis produced biosurfactant when grown on unconventional substrates like groundnut oil cake, sunflower oil, and molasses. Of these carbon substrates used, sunflower oil cake showed highest biosurfactant production (1.5 g/L) and reduction in surface tension (68%). The biosurfactant produced by MS16 efficiently emulsified various hydrocarbons. The carbohydrates and fatty acids of the biosurfactants were studied using TLC, FTIR, NMR, and GC‐MS. The carbohydrate composition as determined by GC‐MS of their alditol acetate derivatives showed the predominance of glucose, galactose and arabinose, and hydroxyl fatty acids of chain length of C16 and C18 on the basis of FAMEs analysis. Biosurfactant showed antifungal activity and inhibited the fungal spore germination. Practical applications : Enterobacter sp., MS16 produces a biosurfactant composed of carbohydrates and fatty acids which exhibits excellent surface active properties. Use of industrial wastes for biosurfactant production is economical and facilitates the industrial production of this biosurfactant which has potential antifungal activity.  相似文献   

18.
Oleochemicals have long been used as biolubricants, biopolymers, and biosurfactants; an effective alternative to petroleum-based products. The present study explores the biosurfactant potential of a novel strain, isolated from rocks of earthquake-prone area. On the basis of morphological, biochemical and 16S rRNA sequencing analysis, the isolate was identified as Staphylococcus nepalensis (KY024500). A biosurfactant yield 2.39, 1.39, and 0.9 g L−1 was obtained using glycerol, waste orange peel, and diesel as a sole carbon source, respectively. Based on oil recovery experimental findings through sand pack column, the obtained biosurfactant from waste orange peels as a sole carbon source was carried forward for further analysis. Thus, obtained biosurfactant from waste orange peels were subjected to solvent extraction and purified by column chromatography. The purified biosurfactant thus obtained was characterized with the help of fourier transform infrared (FTIR), nuclear magnetic resonance (NMR), gas chromatography-mass spectroscopy (GC–MS), and MALDI TOF MS/mass spectroscopy (MS) analysis. FTIR spectroscopic analysis revealed the presence of a carbonyl, amine, hydroxyl, and methyl as functional groups. The GC–MS analysis showed the presence of benzene dicarboxylic acid diethyl ester and pthalic acid as fatty acids while MALDI TOF MS/MS analysis shows lysin-glycin as a hydrophilic dipeptide moiety. This study also demonstrates Microbial Enhanced Oil Recovery (MEOR) potential of the biosurfactant as more efficient than commercial ones. The biosurfactant obtained from waste orange peel as carbon source was able to facilitate a 20% higher recovery of diesel from sand pack recovery column.  相似文献   

19.
生物表面活性剂的开发和应用   总被引:17,自引:2,他引:17  
生物表面活性剂经过三十年的发展,现分为发酵法和酶法合成两个分支。生物表面活性剂的品种包括中性类脂、磷脂/脂肪酸、糖脂、含氨基酸类脂,聚合型和特殊型生物表面活性剂。  相似文献   

20.
张晓华  姜岩  岳希权  张贤明 《化工进展》2016,35(7):2033-2040
第三次采油技术的发展促进了表面活性剂在油田生产中成熟而稳定的应用。与化学合成表面活性剂相比,生物表面活性剂具有无毒等优势,在近些年呈现出热点研究态势,部分成果业已得到应用。本文从生物表面活性剂的驱油机理、纯化、应用3个方面进行论述,并对其发展趋势进行了展望。在驱油机理方面,主要通过降低油水界面张力、乳化残油以及润湿性反转3种作用,保障开采后期的油藏采收率。在纯化方面,单一方法制备生物表面活性剂技术已经较为成熟,但这些方法均具有一定局限性;采用两种或多种方法联用,既可以降低纯化成本又可以提高产率,成为未来生物表面活性剂纯化技术的发展趋势。在应用方面,主要体现在与化学表面活性剂进行复配后定向注入油藏进行驱油;此外,近年来也开发出利用高效营养剂激活本源微生物,诱导其产生表面活性物质继而富集、驱油的新技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号