首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
与氟盐堆相比,氯盐快堆具有超铀核素(Transuranics,TRU)溶解度更高、中子能谱更硬、熔点更低等方面的优势。基于熔盐嬗变堆(Molten Salt Actinide Recycler and Transmuter,MOSART)的堆芯结构,采用熔盐堆在线添料和后处理程序MSR-RS(Molten Salt Reactor Reprocessing Sequence)进行分析,针对氯盐快堆的熔盐组成、后处理方式等方面进行了优化,以利于提升其增殖及嬗变性能。首先分析了不同载体盐和启动燃料对燃耗性能的影响,提出了熔盐成分优化方案;然后引入离线批处理和在线连续处理两种后方式来提升燃耗性能。结果表明:在氯盐快堆中,高重金属溶解度的Na Cl更适合作为载体盐;TRU中的次锕系核素(Minor Actinides,MA)有助于提升增殖性能;采用离线批处理能够达到较好的燃耗性能,降低对后处理系统的要求。优化后的堆芯燃耗时间延长到31 a,相应的燃耗深度提高至210 GW·d·t~(-1)左右,233U的积累量达到8 300 kg,并且最终消耗了约12 000 kg的TRU,嬗变率为62.1%。  相似文献   

2.
DRAGON&DONJON程序在MSR中堆芯燃耗计算的适用性   总被引:2,自引:0,他引:2  
DRAGONDONJON组件-堆芯"两步法"程序通过合理简化,理论可适用于任何堆芯与工况。使用蒙特卡罗方法 RMC(Reactor Monte Carlo code)、MCNP(Monte Carlo Neutron Particle transport code)程序验证DRADON程序是否能够承担快/热谱型熔盐堆(Molten Salt Reactor,MSR)焚烧TRU、Th U燃料燃耗计算。选出熔盐增殖堆(Molten Salt Breeder Reactor,MSBR)与熔盐锕系元素再循环和嬗变堆(Molten Salt Advanced Reactor Transmuter,MOSART)堆型进行比较,同时分别利用RMC程序验证DRAGON程序组件燃耗计算的准确性,利用MCNP程序验证DRAGON程序组件均匀化方法以及DONJON程序截面调用和程序全堆扩散的准确性。结果表明,组件燃耗计算中,TRU和Th U燃料满足燃耗计算要求;堆芯临界计算中,快/热谱堆芯计算误差均小于0.001。证明DRADON程序可以胜任快、热谱型MSR焚烧TRU、Th U燃料的物理计算任务。  相似文献   

3.
《核技术》2017,(2)
作为四代堆6种候选堆型中唯一的液态燃料反应堆,熔盐堆对未来核能和钍资源利用具有重要意义,特别是熔盐快堆(Molten Salt Fast Reactor,MSFR)还具有较大的增殖比和较好的温度负反馈。由于启动新的熔盐快堆需要较高的燃料装载量,若能改善MSFR的增殖性能,则有利于提高233U产量并缩短燃料倍增时间。首先应用SCALE6.1针对MSFR的径向增殖盐、新增轴向增殖盐和新增石墨反射层这三方面分析了初始增殖比,同时从核素吸收率角度说明增殖比变化的原因和MSFR的设计不足并对其进行了优化;然后应用基于SCALE6.1开发的熔盐堆在线处理模块(Molten Salt Reactor Reprocessing Sequence,MSR-RS)进行燃耗分析。结果表明,新增轴向增殖盐可以进一步提高增殖性能;新增石墨反射层可以节省增殖盐装载量。改进后的堆型运行时增殖比可以维持在1.1以上,233U年产量提高至133 kg,倍增时间缩短至36 a,并且堆芯在整个运行寿期都能保持足够的温度负反馈。  相似文献   

4.
彭民雨  刘亚芬  邹杨  戴叶 《核技术》2024,(2):155-164
氯盐快堆具有重金属溶解度高和能谱较硬等特性,是嬗变超铀核素(Transuranic elements,TRU)的理想堆型。本文提出了一种50 MW小型模块化氯盐快堆(small-Modular Chlorine salt Fast Reactor,sm-MCFR)方案,对其焚烧TRU特性进行了初步研究。采用了基于SCALE(Standardized Computer Analyses for Licensing Evaluation)和MODEC(MOlten Salt Reactor Specific DEpletion Code)开发的耦合程序TMCBurnup(TRITON MODEC Coupled Burnup Code),计算并分析了sm-MCFR在TRU+232Th和TRU+DU(Depleted Uranium)两种燃料方案下的临界、燃耗、核素演化和嬗变TRU等物理性能。结果表明:在sm-MCFR运行期间,为维持临界状态,需在线添加TRU,以确保有效增殖系数keff>1;满功率运行40 a时,采用TRU+Th燃料方案下堆芯剩余TRU量为657...  相似文献   

5.
熔盐堆作为第四代核能系统堆型之一,液态燃料形态的特点使其可以实现在线处理和在线添料。为了提高中子经济性可以利用在线处理的氦鼓泡法,将氦气通入反应堆一回路,去除堆芯内的裂变气体(如Xe、Kr)。基于钍基熔盐液态堆(Thorium Molten Salt Reactor-Liquid Fuel1,TMSR-LF1)概念设计,结合熔盐实验堆(Molten Salt Reactor Experiment,MSRE)氙毒模型,分析了鼓泡法去除氙毒中~(135)Xe扩散规律和去除效率对氙毒的影响,并给出了对应的初始有效增殖因子的变化规律。分析结果表明,虽然存在~(135)Xe会大量向石墨扩散的可能性,但是鼓泡法仍然可以有效去除TMSR-LF1堆芯内的~(135)Xe,减小堆芯毒性,提高反应性。  相似文献   

6.
加速器驱动的次临界熔盐堆(Accelerator-Driven Subcritical Molten Salt Reactor,ADS-MSR)结合了熔盐堆与ADS的许多优点,在先进核燃料利用方面有独特的优势。为了研究熔盐燃料的使用对ADS系统堆芯的中子学性能的影响,基于MCNP(Monte Carlo N Particle Transport Code)程序,分别计算并分析了熔盐燃料对加速器驱动的次临界堆的外源质子效率、中子能谱以及钍铀转换比等参数的影响。结果表明:相较于氧化物燃料,熔盐燃料的使用将会增加对外源中子和裂变中子的慢化,并且会提高堆芯的入射质子效率。同时,由于熔盐燃料的慢化效应,FLi Be和FLi熔盐燃料燃耗初期的钍铀转换比(CR)分别为1.023和1.062,略低于氧化物燃料的1.068。另一方面,熔盐燃料的在线处理会极大降低燃耗过程中的反应性损失。通过在线燃料处理和在线添料,FLi熔盐和FLi Be熔盐燃料的CR分别在燃耗运行的第1年和第3年超过氧化物燃料,并且能够长期稳定在1.06和1.00左右。  相似文献   

7.
锂(Li)元素是液态熔盐堆中冷却剂熔盐的重要组成成分,由于6Li相对~7Li具有较大的中子吸收截面,其在冷却剂熔盐中的摩尔含量会影响液态熔盐堆的钍铀转换性能,因此研究~7Li富集度对液态熔盐堆钍铀转换性能的影响十分必要。基于熔盐快堆(Molten Salt Fast Reactor,MSFR)的堆芯结构,分别采用FLi和FLiBe两种不同的冷却剂熔盐,选取范围在99.5%~99.995%的一系列~7Li富集度,借助熔盐堆后处理程序MSR-RS(Molten Salt Reactor Reprocessing Sequence),针对能谱、233U初装量、钍铀转换比、233U净产量和倍增时间、Li的演化以及氚产量等一系列参数进行分析。研究结果表明:在MSFR的堆芯中,较FLiBe而言,采用FLi作载体盐能够获得更好的钍铀转换性能;当~7Li富集度由99.995%变为99.9%时,堆芯钍铀转换比降低约1.6%,氚产量增加约8%。综合考虑燃料制造成本和钍铀转换性能等因素,对于分别采用FLi和FLiBe作载体盐的熔盐快堆MSFR,推荐的~7Li富集度都为99.9%。  相似文献   

8.
无慢化罐式堆芯结构的熔盐快堆(Molten Salt Fast Reactor,MSFR)中存在中子物理与热工水力的强耦合。应用耦合蒙特卡罗粒子输运程序OpenMC与计算流体力学软件OpenFOAM,建立了一套适用于熔盐快堆的三维稳态核热耦合计算程序。该程序基于python编程语言实现了OpenMC和OpenFOAM二者间的功率、燃料盐温度和密度分布等数据交互,可以获得堆芯内三维功率分布、中子通量密度分布、三维速度场和温度场分布。采用该耦合程序,建立了熔盐快堆的基准模型,研究了中子学区域划分数目和初始条件对keff、燃料盐速度和温度分布的影响。根据研究结果,推荐了一套合理的中子学区域划分方法与数目,表明了耦合程序设定的不同初始条件对keff结果无影响。最后,通过与熔盐快堆基准结果的对比验证了耦合程序的正确性,表明该程序适用于熔盐快堆的稳态核热耦合分析。  相似文献   

9.
熔盐堆是第四代核能论坛确定的6种先进四代堆型之一,在固有安全、燃料循环、小型化、核资源的有效利用和防止核扩散等方面有其特有的优点。美国橡树岭国家实验室基于熔盐实验堆(Molten Salt ReactorExperiment,MSRE)设计、建造和运行经验,完成了熔盐增殖堆(Molten Salt Breeder Reactor,MSBR)概念设计。本文对MSBR进行初步的安全分析,为进一步改进和优化熔盐堆安全特性提供参考。根据MSBR的概念设计,建立了一个采用耦合简化传热机制点动力学的安全分析模型,并通过MSRE实验数据进行了验证。应用该模型模拟计算了MSBR在阶跃反应性和线性反应性引入后的堆芯热功率、堆芯石墨和堆芯熔盐温度瞬态。结果表明:在引入不超过500 pcm反应性情况下,无需采取任何措施,不会出现温度过高、堆芯结构材料融化事故;若需采取控制措施,线性引入反应性比阶跃引入反应性更易于控制,且应尽量避免短时间内引入反应性。  相似文献   

10.
熔盐快堆具有燃料增殖、核废料嬗变和固有安全性等方面的突出优点,是目前备受关注的第四代先进核能系统唯一使用液态燃料的核反应堆。熔盐快堆通常选用液态氟盐或氯盐作为燃料载体盐和冷却剂,高增殖特性是其主要特征参数之一。基于双流体熔盐堆堆芯结构,采用基于反应堆安全分析和设计的综合性模拟程序SCALE(Standardized Computer Analyses for Licensing Evaluation)对两种氟盐快堆和一种氯盐快堆在同一重金属溶解度下的U-Pu燃料增殖比进行模拟计算,对不同增殖层和反射层下的增殖比进行了模拟分析,并分析了氯盐快堆在增殖层和反射层变化时,裂变区和增殖区中子能谱的变化情况。结果表明:在相同温度、相同摩尔比下,氯盐快堆比氟盐快堆具有更高的U-Pu燃料增殖比;氯盐快堆的增殖比随着增殖层和反射层厚度的增加而增加,但是增殖比的增长速率有所减弱;氟盐快堆的增殖层在厚度尺寸较小时,其变化对增殖比有较小影响,当厚度増至60 cm时,增殖层厚度尺寸的变化几乎对增殖比没有影响;氟盐快堆的反射层尺寸的变化对增殖比没有影响;增殖层和反射层厚度的改变不影响堆芯临界状态和裂变区中子能谱。这为三种熔盐快堆的基盐选择及尺寸设计从增殖方面提供了理论依据。  相似文献   

11.
小型模块化熔盐快堆燃料管理初步分析   总被引:1,自引:0,他引:1  
由于燃料随熔盐流动的特性以及可以进行在线添料与处理的特点,液态燃料熔盐堆的燃耗分析与燃料管理和传统固态燃料反应堆有很大不同,需要针对液态燃料熔盐堆的特点重新开发燃耗分析与管理程序。本文针对液态燃料熔盐堆的熔盐流动特性以及在线添料与处理功能,基于MCNP5和ORIGEN2.1燃耗耦合程序,开发了适用于液态燃料熔盐堆的燃料管理程序,并应用于一种小型模块化熔盐快堆的燃料管理和分析,对比分析了5种不同运行方案以及分批在线添料情况下,运行30年期间keff的变化情况及重要核素的演化情况。计算结果表明,采用不断调整添料率的连续在线添料运行方案和固定批量添料的运行方案,都可以让小型模块化熔盐快堆维持运行在一个较小的keff波动范围之内。开发的燃料管理程序适用于液态燃料熔盐堆的研究,同时可以为液态燃料熔盐堆的设计及燃耗管理和分析提供有价值的参考。  相似文献   

12.
在线添料及在线去除中子毒物是熔盐堆区别于其他固体燃料反应堆的主要特征之一,能够实现较高的燃耗深度和燃料利用率。然而,现有的反应堆物理计算分析软件SCALE不能直接模拟熔盐堆的燃耗计算。因此,本文耦合SCALE中的截面处理模块、临界计算模块以及燃耗计算模块,开发了一套适用于多流体熔盐堆的添料与后处理系统分析程序MSR-RRS,实现熔盐堆的在线添料、裂变产物在线处理或离线批次处理等模拟功能。基于MSR-RRS对现有的单流熔盐增殖堆和双流熔盐快堆的燃耗性能进行了验证。结果表明,MSR-RRS计算结果与基准模型结果符合较好。MSR-RRS适用于多种堆型、多种燃料循环运行模式。  相似文献   

13.
熔盐堆(Molten Salt Reactor,MSR)采用熔融的氟化盐混合物作为燃料,由于核燃料的特殊性,MSR在中子物理学方面与传统固体燃料反应堆有着较大区别。本文基于蒙特卡罗程序MCNP(Monte Carlo N Particle Transport Code),以美国橡树岭国家实验室(Oak Ridge National Laboratory,ORNL)熔盐堆实验(Molten-Salt Reactor Experiment,MSRE)为参考反应堆,系统研究了堆芯尺寸、燃料盐体积比、燃料盐重金属摩尔比、燃料盐渗透等物理参数对堆芯物理特性参数的影响。结果表明:随着堆芯尺寸增加,堆芯临界装载量有最小值;随着燃料盐体积比增加,燃料盐回路系统中重金属临界装载量先减少后增加,燃料温度系数的绝对值同样先减小后增加;燃料盐浸渗对堆芯反应性的影响,与燃料盐体积比增加对堆芯反应性产生的影响一致。本研究为2 MW液态燃料钍基熔盐堆(Thorium Molten Salt Reactor-Liquid Fuel,TMSR-LF1)设计提供理论参考。  相似文献   

14.
基于Mathematica 7.0建立了熔盐堆(Molten Salt Reactor,MSR)主回路系统衰变热流动模型,并与参考程序ORIGENS在静态燃耗下的计算结果以及熔盐实验堆(Molten Salt Reactor Experiment,MSRE)衰变热结果进行了初步验证,相对偏差分别在±4%和±2.76%的范围内符合较好。对2 MW液态燃料钍基熔盐实验堆(Thorium Molten Salt Reactor-Liquid Fuel 1,TMSR-LF1)正常运行工况下主回路系统管道及设备内的衰变热分布进行了定量分析。结果表明:启堆达到满功率和设定流量后约20 s各区域衰变热快速积累,随后便开始平缓上升并趋平衡。平衡时堆芯活性区衰变热占总衰变热的46.7%,上腔室、热管段#1、主泵、热管段#2、换热器、冷管段及下腔室区域分别占比31.8%、1.21%、14.6%、0.89%、2.21%、1.67%和0.94%。所建立的分析方法及结论可为熔盐堆主回路系统的热工水力安全分析、余热排出系统设计、反应堆功率调节与安全控制提供重要参考。  相似文献   

15.
基于MCNP和ORIGEN的熔盐快堆燃耗分析计算   总被引:1,自引:1,他引:0  
熔盐堆是6种第4代先进核能系统中唯一使用液态燃料设计的反应堆型,其堆芯一回路中循环流动的熔盐既是燃料,也是冷却剂。这一特征在省去燃料元件加工制造步骤的同时,也使得熔盐堆能进行在线处理和在线添料的操作。因此,传统固态反应堆燃耗分析程序不再适用于熔盐堆。本文以熔盐快堆(MSFR)为分析对象,基于物理分析程序MCORE(MCNP+ORIGEN),将上述熔盐堆特点考虑进去,开发出能进行熔盐堆燃耗分析的MCORE-MS。初步分析表明,233 U-started模式下,熔盐在线处理可有效降低堆芯熔盐中裂变产物的含量,提高中子经济性。MSFR运行过程中能够一直保持负的温度反应性系数。  相似文献   

16.
韩嵩  杨永伟 《核动力工程》2007,28(3):14-18,55
分析加速器驱动系统(ADS)钠冷金属燃料快堆重金属燃料不同核素对堆芯有效增殖系数(Keff)的影响,给出了燃料成分的确定方法,详细分析次锕系核素(MA)嬗变特性.运用耦合了MCNP4c3与ORJGEN2的三维燃耗程序COUPLE对堆芯进行稳态与燃耗计算.结果分析表明,调节燃料中239Pu的质量比例并使其在燃耗过程中保持稳定是使Keff达到设计值并在燃耗过程中保持稳定的有效手段.散裂中子引起堆芯内区较外区更硬的中子能谱,有利于提高MA的裂变截面与裂变吸收比.全堆MA嬗变支持比为8.3,具有较好的嬗变效果.由于堆芯内区的高通量,堆芯内外区的嬗变率有明显差异,将MA集中布置于内区有利于减少装料量,改善总体嬗变效果.  相似文献   

17.
钍基熔盐堆核能系统(Thorium-based Molten Salt Reactor,TMSR)是中国科学院首批启动实施的战略性先导科技专项,旨在研发第四代反应堆核能系统。固态燃料钍基熔盐实验堆(The Solid Fuel Thorium-based Molten Salt Experimental Reactor,TMSR-SF1)是一个10 MW热功率的氟盐冷却球床堆,目前已经完成方案设计和初步工程设计。功率控制系统是反应堆一个关键控制系统,实现反应堆正常启动、功率运行和正常停堆功能,对保证反应堆安全和稳定运行起着极其重要的作用。根据TMSR-SF1运行控制要求,结合自适应控制理论,基于Lyapunov稳定性理论设计了一种TMSR-SF1模型参考自适应功率控制器。基于TMSR仿真平台,使用MATLAB/Simulink建立了自适应功率控制系统模型,并开展了控制器特性分析。结果表明,自适应功率控制器具备良好的负荷跟随能力,抗干扰能力强、稳定性好、可靠性高,能够满足TMSR-SF1功率控制的要求,确保堆芯的输出功率与功率设定值相匹配。  相似文献   

18.
氟盐冷却球床堆是当前国际上一种新的研究堆型,尚无已经建造完成的反应堆,因此,选择相似且具有运行经验的反应堆作为基准题有助于堆芯核设计软件适用性分析。利用国际上常采用的相似性分析软件,可对熔盐实验堆(Molten Salt Reactor Experiment,MSRE)及10 MW高温气冷堆(10 MW high-temperature gas-cooled test reactor,HTR-10)与氟盐冷却球床堆的相似性进行分析,定量判断它们作为基准题的合理性。分析结果表明,MSRE和氟盐冷却球床堆的能谱峰位能量接近且堆内元素种类相近,二者相似程度较高;常温临界HTR-10和氟盐冷却球床堆冷却剂不同,且能谱峰位能量差异较大,二者相似程度较低。因此,MSRE是氟盐冷却球床堆中子物理设计软件较理想的基准题。  相似文献   

19.
《核技术》2015,(3)
熔盐堆作为第四代反应堆论坛推荐的6种候选堆型之一,具有输出温度高、能量密度高、无水冷却等特点。固态钍基熔盐堆(Thorium Molten Salt Reactor with Solid Fuel,TMSR-SF1)堆芯大部分结构材料为石墨,冷却剂杂质及石墨材料中的13C和杂质N、O易被活化产生14C。14C半衰期较长,同其他稳态核素12C、13C一样广泛参与各种复杂的生物循环,在反应堆中受到关注。TMSR-SF1中的14C广泛分布于冷却剂、堆芯石墨结构材料和燃料元件。本文采用输运燃耗耦合方法,应用SCALE6.1的TRITION控制模块对反应堆各区域的14C放射性活度进行计算分析,结果表明,反应堆在正常运行工况下一回路每年产生的14C放射性活度为0.34 TBq,满足现有的压水堆、重水堆管理限值要求。向环境释放的14C主要来自于一回路熔盐中N杂质的活化。  相似文献   

20.
本文利用了一个根据球床模块堆(Pebble Bed Modular Reactor,PBMR)用核石墨材料辐照性能数据编写的用户自定义材料模型(User defined Material model,UMAT),按照美国橡树岭国家实验室(Oak Ridge National Laboratory,ORNL)的液态燃料熔盐试验堆(Molten Salt Reactor Experiment,MSRE)用核石墨构件尺寸,为钍基熔盐堆(Thorium-based Molten Salt Reactor,TMSR)设计了一款方型核石墨构件。利用新编UMAT对该核石墨构件进行了初步的应力分析。分析结果表明,在没有预制裂纹的情况下辐照梯度越大核石墨构件中心区域最大主应力值越大,构件的断裂位置可能出现在构件中心位置处;对于有V型凹口预制裂纹的情况,应力集中部位均出现在预制裂纹尖端附近,这将可能导致裂纹尖端附近出现裂纹扩展,从而引起构件断裂失效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号