首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 569 毫秒
1.
《分离科学与技术》2012,47(12-13):1659-1666
Abstract

Emulsion-Liquid-Membrane-Perraeation (LMP) is an operation for the recovery of several harmful substances from industrial waste water streams. Within this process the substance is separated from the waste water and enriched by a factor up to 1000 in the receiving phase depending on the process conditions. The largest experimental experiences are in the separation of Zn, Cd, Pb, Cu, Ni, NH3 and phenol from aqueous solutions.  相似文献   

2.
ABSTRACT

This paper presents the results of the selective removal of Zn(II) from Cu(II), Cd(II), Ni(II) and Pb(II) using ‘Extraction Chromatographic Resins’ Lewatit TP80T84, which contains dK2,4,4-trimethylpentyl)pbosphinic acid as active component. The extraction and selectivity patterns of the resin were obtained from the metal distribution coefficients as a fiinction of pH. Experimental data of Pb(II), Ni(II) and other natural water occurring metal ions, such as Ca(II), were analyzed graphically and numerically in order to describe the metal extraction reactions. Analysis of the results showed that the extraction of these metal ions can be explained assuming the formation of metal complexes in the resin phase with a general composition ML2(q 3HL)q, where q takes different values depending on the metal studied. Finally the efficiency of the resin in the selective removal of Zn(II) from the toxic heavy metal group Cu(T±), Cd(II), Ni(II) and Pb(II) were evaluated.of divalent metal ions (Zn(II), Cu(II), Cd(n), Ni(II), Pb(n)). Concerning the extraction selectivity of Lewatit TP80784 resins versus Zn(II), Cu(II)( Cd(n), Ca(n), Pb(n) and Ni(II), no differences have been found in comparison with the selectivity of this extractant in organic solvents (36). The results of the numerical treatment indicate that the extraction of Pb(n) and Ni(II) can be explained by assuming the formation of PbL2(HL2 and NiL2(HL)2. However, the extraction of Ca(II) can be explained assuming the formation of two species CaL2 and Ca(NO3)L|The analysis of the separation factors indicates that Lewatit TP80784 allows a quantitative separation of Zn(II) from Cd(II), Ni(II) and Pb(II) with ApHso greater that 2 and quasi-quantitative separations (90-95%) from Cu(II)|The results obtained in the extraction of Zn(IT), Cu(H), Cd(II), Ni(II), and Pb(n) from water samples in column experiments are very satisfactory, and the sytem will be used on-line in a multicomponent spectrophotometric method for the monitoring of low levels of toxic metal ions in surface waters.  相似文献   

3.
Sorption properties of the glycidylmethacrylate-ethylenedimethacrylate copolymer with the ? OH and ? NH2 groups were characterized by using the static and dynamical procedure. Hg(II) was found to be sorbed selectively from the acetate buffer. Using sorption and desorption isoplanes determined in the measurements, conditions of the sorption of Hg(II) and its separation from an excess of some metal ions (Cu(II), Pb(II), Cd(II), Co(II), Zn(II), Ca(II), Mg(II)) were determined.  相似文献   

4.
《分离科学与技术》2012,47(4-5):489-505
Abstract

The objective of the present work is to extend the application of adsorbing colloid flotation techniques to remove mixtures of metal ions. The systems studied are: 1) Co(II) and Cr(VI); 2) Co(II), Ni(II), and Cr(VI); 3) Cr(VI), Cu(II), and Zn(II); 4) Cr(VI), Cu(II), Zn(II), and Ni(II); 5) Cd(II), Pd(II), and Cu(II). Ferric hydroxide and aluminum hydroxide were used as the coprecipitant, and sodium lauryl sulfate was used as the collector and frother. The ionic strength of the solution was adjusted with NaNO3 or Na2SO4. It was found that all the heavy metals can be removed effectively by a single step foam flotation treatment.  相似文献   

5.
《分离科学与技术》2012,47(12):2825-2847
Abstract

The separation and concentration of gallium from acidic leach solutions, containing various other ions such as iron, cobalt, nickel, zinc, cadmium, lead, copper, and aluminium, by an emulsion liquid membrane (ELM) technique using tributyl phosphate (TBP) as carrier has been presented. Liquid membrane consists of a diluent, a surfactant (ECA 4360J), and an extractant (TBP), and 0.1 M HCl or 0.1 M H2SO4 were used as the stripping solution. The important variables governing the permeation of gallium and their effect on the separation process have been studied. These variables were membrane type and composition, mixing speed, diluent type, surfactant concentration, extractant concentration, HCl concentration in the feed, acid type of stripping phase, feed concentration, and treatment ratio. The optimum conditions were determined. It was possible to selectively extract 96.0% of gallium from the acidic leach solutions, containing Fe, Co, Ni, Zn, Cd, Pb, Cu, and Al, at the optimum conditions.  相似文献   

6.
A 2,2′-dihydroxybiphenyl–formaldehyde copolymer, synthesized by the condensation of 2,2′-dihydroxybiphenyl with CH2O in the presence of an acid catalyst, proved to be a selective chelating ion-exchange copolymer for certain metals. The chelating ion-exchange properties of this copolymer were studied for Fe(III), Cu(II), Ni(II), Zn(II), Cd(II), and Pb(II) ions. A batch equilibrium method was employed in the study of the selectivity of metal ion uptake, involving the measurements of the distribution of a given metal ion between the copolymer sample and the solution containing the metal ion. The study was carried out over a wide pH range and in media of various ionic strengths. The copolymer showed a higher selectivity for Fe(III), Cu(II), and Ni(II) ions than for Co(II), Zn(II), Cd(II), and Pb(II) ions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
ABSTRACT

The extraction of copper, cadmium and related metals (M2+) with poly(sodium acrylate - acrylic acid) PAA hydrogels has been studied. pH variations are consistent with a cation exchange process. Saturation of the gel is achieved for a metal/carboxylate ratio R ≈ 1/2 and a gel swelling of ≈ 40 which is that of the uncharged gel : (-COO)2M complexes are expected to be formed, but also complexes of higher stoichiometry (R = 1/3 for Cu and Cd, R = 1/4 for Pb) at low metal concentrations. The selectivity is that observed in liquid-liquid extraction of metal cations with fatty carboxylic acids (Pb > Cu > Cd > Zn > Ni ≈ Co). Metal stripping from the gel is readily achieved by washing with 0.1 M HNO3. PAA hydrogel extraction allows to remove cadmium from a diluted aqueous solution down to a final concentration of 5 ppb.  相似文献   

8.
Surplus, low value agricultural by-products can be made into granular activated carbons (GACs) which are used in environmental remediation. This study characterized and evaluated GACs, made from these feedstocks, as effective removers of organics and metals from water. The by-products included soft lignocellulosics such as rice straw, soybean hull, sugarcane bagasse, peanut shell, and harder materials such as pecan and walnut shells. The softer materials were combined with a binder, molasses, to produce briquettes and pellets. The precursors were CO2- or steam-activated, and subsequent treatments included oxidation to enhance metal adsorption. Many of the GACs had acceptable physical GAC attributes, such as durability, for commercial usage. GACs made from pecan and walnut shells adsorbed higher levels of benzene, toluene, methanol, acetonitrile, acetone, and 1,4-dioxane from an aqueous mixture than commercial GACs. Neither CO2 nor steam activation was particularly advantageous in enhancing metal adsorption. Oxidation using O2–N2 gas increased metal adsorption while (NH4)S2O8 solution did not. In a copper solution, oxidized GACs made from soybean hull had three to four times the Cu(II) adsorption capacity of metal-adsorbing, commercial GACs. Oxidized GACs made from soybean hull, sugarcane bagasse, peanut shell, and rice straw adsorbed from a mixture higher amounts of Pb(II), Cu(II), Ni(II), Cd(II) and Zn(II) than any commercial GACs. Commercial GACs adsorbed only Pb(II), Cu(II) and Cd(II). The GACs made from the agricultural by-products have considerable potential for adsorption of organics and metals of environmental concern. © 1998 SCI.  相似文献   

9.
The adsorption technology involving nano zerovalent iron (NZVI) has been widely employed to remediate polluted water based on a number of economic aspects. However, this technology is facing a high challenge in the removal process of pollutants due to hydrolysis and stability characteristics of zerovalent iron. Therefore, this study is aimed to demonstrate a method for encapsulation and functionalization of NZVI nanoparticles with 3-aminopropyltrimethoxysilane (NH2) and 2-pyridinecarboxaldehyde (PY), respectively to produce the target nanocomposite (NZVI-NH2-PY). Zerovalent iron nanoparticles are also aimed to functionalize with ethylenediamine (ED) and 2-pyridine carboxaldehyde to produce NZVI-ED-PY nanocomposite. The TEM images showed that the sizes of NZVI-NH2-PY and NZVI-ED-PY nanocomposites are in the range 3.33–4.35 and 5.42–10.36 nm, respectively. More characterization evidences were concluded by thermal gravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The two novel magnetic nanocomposites have been used for removal of Co(II), Zn(II), Pb(II), Cd(II), Hg(II), Cu(II) beside radioactive isotopes (65Zn and 60Co) from water. NZVI-NH2-PY nanocomposite was more selective toward Hg(II), Pb(II) and Cd(II), while NZVI-ED-PY was more selective toward Z(II), Co(II) and Co(II). Different kinetic models were applied and the investigated metal ions were characterized to undergo the pseudo-second order using both NZVI-NH2-PY and NZVI-ED-PY nanocomposites.  相似文献   

10.
Abstract

Within the framework of our research activities related to the partitioning of spent nuclear-fuel solutions, the direct selective extraction of trivalent actinides from a simulated PUREX raffinate was studied using a mixture of CyMe4BTBP and TODGA (1-cycle SANEX). The solvent showed a high selectivity for trivalent actinides with a high lanthanide separation factor. However, the coextraction of some fission product elements (Cu, Ni, Zr, Mo, Pd, Ag, and Cd) from a simulated PUREX raffinate was observed, with distribution ratios up to 30 (Cu). The extraction of Zr and Mo could be suppressed using oxalic acid but the use of the well-known Pd complexant N-(2-Hydroxyethyl)-ethylendiamin-N,N′,N′-triacetic acid (HEDTA) was unsuccessful. During screening experiments with different amino acids and derivatives, the sulfur-bearing amino acid L-Cysteine showed good complexation of Pd and prevented its extraction into the organic phase without influencing the extraction of the trivalent actinides Am (III) and Cm (III). The optimization studies included the influence of the L-Cysteine and HNO3 concentration and the kinetics of the extraction. The development of a process-like extraction series showed very promising results in view of further optimizing the process. A strategy for a single-cycle process is proposed within this article.  相似文献   

11.
Abstract

A solid phase extraction and preconcentration methodology utilizing a new chelating resin is described for the separation of Cd, Ni, Co, Cu, and Zn. The chelating resin matrix was prepared by covalently linking 2,2′‐dithiobisaniline synthesized from 2‐aminothiophenol with the benzene ring of polystyrene‐divinylbenzene resin Amberlite XAD‐2 through a –N?N– group. Its adsorption and preconcentration behavior for Cd, Ni, Co, Cu, and Zn in aqueous solution was studied using batch and column procedures in detail. The newly designed resin quantitatively adsorbs Cd, Ni, Co, Cu, and Zn above pH 5.0. Subsequent elution with 2 M HCl readily strips the sorbed metal ions from the resin. The sorption capacity is 360, 230, 170, 200, and 150 mol g?1 for Cd, Ni, Co, Cu, and Zn, respectively. Their preconcentration factors are 80–200. The time for 80% sorption was less than 10 min for all five metal ions. The effects of electrolytes on the preconcentration were also investigated with the recoveries >95%. The procedure was validated by analysis of a standard reference river sediment material (GBW 08301 China). The developed method was successively utilized for the determination of Cd, Ni, Co, Cu, and Zn in tap water and river water by flame atomic absorption spectrometry (FAAS) after column SPE and preconcentration. The 3σ detection limits for these metal ions were found to be 0.10, 0.34, 0.42, 0.16, and 0.52 g L?1, respectively. The relative standard deviation was <10% for the determination of 10 g each of Cd, Ni, Co, Cu, and Zn in a 100 mL water sample.  相似文献   

12.
《分离科学与技术》2012,47(15):2440-2447
Due to lack of proper treatment methods, Pb pollution caused by improper treatment of electronic wastes (e-waste) has been attracting increasing attention. This paper investigates the separation behavior of Pb in the presence of Cu and other metallic particles (Cd, Bi, and Zn), in order to separate and recover various metals effectively from the copper-rich particles of crushed e-wastes. Vacuum metallurgy separation method is adopted to separate and recover Pb from the copper-rich particles of crushed e-wastes. Due to the variety and complexity of metals in copper-rich particles, this paper studies the effects of Cu, Cd, Bi, and Zn on vacuum separating and recycling of Pb. It is found that Cu particles have both a positive dispersing and a negative blocking effect on Pb evaporation. Cd can be evaporated preferentially, and then Pb can be subsequently separated for their huge vapor pressure gap. The formation of Pb-Bi alloy with a low vapor pressure makes the separation of Pb more difficult. As a result of different condensation characteristics, Pb and Zn can be evaporated together from Cu particles, and then be respectively condensed on different positions as pure Pb and Zn.  相似文献   

13.
Chloromethylated polystyrene‐divinylbenzene has been functionalized with dithiooxamide. The resulting chelating resin (DTOA) has been characterized by elemental analyses, infrared spectroscopy, thermogravimetric analysis, and metal ion sorption capacities. It has been used for the preconcentration and separation of Cu(II), Zn(II), Cd(II), and Pb(II) prior to their determination by FAAS. Parameters such as the amount of the resin, effect of pH, equilibration rate, sorption and desorption of metal ions, and effect of diverse ions have been studied. The maximum sorption capacities found are 0.97, 0.12, 0.08, and 0.12 mmol g?1 for Cu(II), Zn(II), Cd(II), and Pb(II) at pH 6.0, 5.5, 1.0, and 5.5, respectively. The preconcentration factors are 100, 100, 50, and 50 for Cu(II), Zn(II), Cd(II), and Pb(II), respectively. Recoveries of the metal ions were 96 ± 5, 97 ± 6, 96 ± 5, and 96 ± 5 at 95% confidence level, whereas the limits of detection are 2.0, 1.3, 2.5, and 25.0 μg L?1 for Cu(II), Zn(II), Cd(II), and Pb(II), respectively. The calibration curves were linear up to 12 μg mL?1 (R2 = 1.000), 2 μg mL?1 (R2 = 0.998), 2 μg ml?1 (R2 = 1.000), and 5 μg mL?1 (R2 = 0.979) for Cu(II), Zn(II), Cd(II), and Pb(II), respectively. The reliability of the method has been tested by analyzing certified samples. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2281–2285, 2007  相似文献   

14.
《分离科学与技术》2012,47(6):1245-1254
Abstract

In this study, Poly(N,N dimethyl‐amino ethylmethacrylate) (Poly(DMAEMA)) hydrogels with varying compositions were prepared in the form of rods by irradiating ternary mixtures of N,N‐dimethylamino ethylmethacrylate/ethyleneglycoldimethacrylate/water with gamma rays at ambient temperature. Swelling studies of poly (DMAEMA) hydrogels were performed at different pH values and maximum swelling values reached at pH 2. The adsorption characteristics of Pb(II), Cd(II), Ni(II), Zn(II), Cu(II), and Co(II) ions to poly(N,N dimethylamino ethylmethacrylate) hydrogels were investigated by a batch process. The order of affinity based on amount of metal ion uptake was found as follows: Cu(II)>Zn(II)?Co(II)>Pb(II) >> Ni(II)>Cd(II). In the adsorption studies of Cu(II), Zn(II), Co(II), Pb(II), Ni(II), and Cd(II) ions the Langmuir type adsorption isotherms were observed for all gel systems.  相似文献   

15.
《分离科学与技术》2012,47(4):815-827
Abstract

In the present paper a procedure for simultaneous preconcentration of Cd, Cu, and Pb using cloud point extraction (CPE) and multielemental sequential determination by thermospray flame furnace atomic absorption spectrometry (TS‐FF‐AAS) is proposed. This preconcentration procedure is based on the metals extraction into micellar media of octylphenoxypolythoxyethanol (Triton X‐114) after their reaction with 1‐(2‐pyridylazo)‐2‐naphtol (PAN). A Box‐Behnken design was used to optimize the variables (pH, buffer concentration and volume of NaCl) involved in the extraction procedure. Enrichment factors were calculated as the ratio between the slopes of calibration equations with and without the preconcentration procedure in the TS‐FF‐AAS, with values of 59, 25, and 21 respectively for Cd, Cu, and Pb. Limits of detection (LOD) (3sb, n=10) were also calculated as 0.025, 0.38, and 0.43 µg L?1 to Cd, Cu, and Pb, respectively. The precision (repeatability) expressed as relative standard deviation (RSD, n=10) for reference standards of 10.0 and 20.0 µg L?1 were 6.1 and 4.5% for Cd, 7.2 and 3.4% for Cu and 5.2 and 8.7% for Pb. The accuracy was confirmed through the analysis of certified reference material (NIST 1643d, Trace elements in water). The developed procedure was also applied to Cd, Cu, and Pb determinations in mineral water samples.  相似文献   

16.
The study was conducted to optimize the selective extraction and recovery of Cu(II) in the presence of Zn(II) and Ni(II) from the leach liquor of waste printed circuit boards (PCBs). The extraction experiments were carried out according to 24 factorial design of experiment to optimize the extraction factors. The design was analyzed using MINITAB to determine the main effects and interactions of the chosen extraction factors. The factors chosen were: extraction pH, amount of Cyanex 272 in dispersed phase during MC-Xs preparation, amount of MC-Xs and temperature. The pH, amount of MC-Xs and temperature were found to be statistically significant. The optimized experimental conditions for the Cu(II) extraction in presence of Zn(II) and Ni(II) were extraction pH 6.0, amount of Cyanex 272 in dispersed phase 3 g, amount of MC-Xs 2.5 g and Temperature 45 °C. Factorial design of experiment was also carried out to determine the Cu(II) stripping factors from the loaded MC-Xs using H2SO4 solution. The liquid-liquid extraction Cu(II) was conducted with the prime aim to evaluate the nature of Cu(II) complex extracted by Cyanex 272. Results showed that the extraction species is [Cu(HA2)(Ac)·2HA]. Finally, a complete process for the separation and recovery of Cu(II), Zn(II) and Ni(II) from the leach liquor of waste PCBs was conducted based on the optimized experimental condition and effect of pH on extraction.  相似文献   

17.
Heavy metal uptake by wheat from a sewage sludge-amended calcareous soil   总被引:1,自引:0,他引:1  
The objective of this 4-year study was to determine single and repetitive effects of sewage sludge applications on the accumulation of lead (Pb), cadmium (Cd), zinc (Zn) and copper (Cu) in soil and wheat (Triticum aestivum). A single sludge application at a rate of 100 Mg ha−1 (for all the metals) and at a rate of 50 Mg ha−1 (for Cu) significantly increased DTPA-extractable metal concentrations 4 years later. DTPA-extractable concentrations of Pb, Zn and Cu were closely correlated with the total concentrations in soil. Their relationships between metal uptake in stalks and DTPA-extractable metal concentrations in soil were approximately linear for Pb, Cd and Cu, but better described by a quadratic equation for Cd and Zn. TF for Pb, Zn and Cu, BF for all metals and BCF for Pb, Cd and Zn were lower in wheat grown on sludge-treated than control plots.  相似文献   

18.
Abstract

A new sorbent, the polyethylenimine methylenephosphonic acid (PEIMPA), was synthesized from commercially available polyethylenimine. After characterization by (1H, 13C, 31P) NMR, elementary analysis, UV/VIS and FTIR, the new ion exchange polymer PEIMPA has been investigated in liquid – solid extraction of a mixture of Cd(II), Co(II), Cu(II), Fe(III), Ni(II), Pb(II), and Zn(II) cations from a mineral residue of zinc ore dissolved in nitric acid. The selectivity of this polymer was studied as a function of pH. PEIMPA can sorb much higher amounts of Fe ion than Cd, Co, Cu, Ni, Pb, and Zn ions. The recovery of Fe(III) is almost quantitative. Because of this remarkable affinity, the PEIMPA resin has the potential for application in several fields. Further studies of the polymer are in progress.  相似文献   

19.
The possibility of hybrid ion exchanger (HIX) application in the simultaneous removal of heavy metal ions such as Cr(VI), Cu(II) and Zn(II) as well as Cd(II) and Pb(II) was presented. The ion exchanger in question combines the unique properties of hydrated metal oxides with the mechanical and thermal stability of synthetic ion exchangers. The kinetics of the sorption process of Cr(VI), Cu(II) and Zn(II) as well as Cd(II) and Pb(II) in the presence of Cl, NO3 and SO42− as well as EDDS (ethylenediaminedisuccinic acid) was also analyzed. Additionally, the effect of initial concentration, phase contact time and pH was also studied. Taking into account the possibility of its application on a large scale, the parameters of the adsorption process were estimated based on the linear form of the Langmuir and Freundlich isotherms.  相似文献   

20.
Microwave-assisted acid digestion (MW-AD) followed by atomic spectrometries such as inductively coupled plasma-atomic emission spectrometry (ICP-AES) was examined for the determination of major and trace elements in coal fly ash (CFA). Effective digestion conditions were studied using four certified reference materials of CFA, with particular focus on the composition of acid mixture and the removal of HF after MW-AD. When MW-AD was conducted without using HF (HNO3+H2O2), the tested elements yielded fairly poor recoveries. When MW-AD with HF (HNO3+HF+H2O2) was carried out, two methods for HF removal were attempted, H3BO3 addition and evaporation of acids. In the former method, while the recoveries of major elements (Al, Ca, Fe, and Mg) were satisfactory, those of trace elements were not satisfactory; in particular, the recovery of Pb was fairly low. In the latter method, the recoveries of Al, Ca, and Mg were extremely poor; however, those of other elements including the trace elements (Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn) were satisfactory. In this paper, the optimization of the digestion method for ICP-AES is discussed. Further, the advantages and limitations of ICP-AES in the determination of elements in CFA are assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号