首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, a thermally coupled membrane reactor is proposed for methane steam reforming and hydrogenation of nitrobenzene. The steam reforming process is carried out in the assisted membrane surface of the endothermic side, while the hydrogenation reaction of nitrobenzene to aniline is carried out on the other membrane surface of the exothermic side. The differential evolution (DE) strategy is applied to optimize this reactor considering nitrobenzene and methane conversion as the main objectives. The co‐current mode is investigated in this study, and the achieved optimization results are compared with those of conventional steam reformer reactor operated under the same feed conditions. The optimum values of feed temperature of exothermic side, feed molar flow rate of nitrobenzene, the steam‐to‐nitrobenzene molar ratio and the hydrogen‐to‐nitrobenzene molar ratio are determined during the optimization process. The simulation results show that the methane conversion and consequently hydrogen recovery yield are increased by 39.3% and 1.57, respectively, which contribute to aniline production with 27.3% saving in hydrogen supply from external and a reduction in environmental problems due to 100% nitrobenzene conversion. The optimization results justify the feasibility of coupling these reactions. Experimental proof‐of‐concept is needed to establish the validity and safe operation of the novel reactor. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
In this work, tri‐reforming and steam reforming processes have been coupled thermally together in a reactor for production of two types of synthesis gases. A multitubular reactor with 184 two‐concentric‐tubes has been proposed for coupling reactions of tri‐reforming and steam reforming of methane. Tri‐reforming reactions occur in outer tube side of the two‐concentric‐tube reactor and generate the needed energy for inner tube side, where steam reforming process is taking place. The cocurrent mode is investigated, and the simulation results of steam reforming side of the reactor are compared with corresponding predictions for thermally coupled steam reformer and also conventional fixed‐bed steam reformer reactor operated at the same feed conditions. This reactor produces two types of syngas with different H2/CO ratios. Results revealed that H2/CO ratio at the output of steam and tri‐reforming sides reached to 1.1 and 9.2, respectively. In this configuration, steam reforming reaction is proceeded by excess generated heat from tri‐reforming reaction instead of huge fired‐furnace in conventional steam reformer. Elimination of a low performance fired‐furnace and replacing it with a high performance reactor causes a reduction in full consumption with production of a new type of synthesis gas. The reactor performance is analyzed on the basis of methane conversion and hydrogen yield in both sides and is investigated numerically for various inlet temperature and molar flow rate of tri‐reforming side. A mathematical heterogeneous model is used to simulate both sides of the reactor. The optimum operating parameters for tri‐reforming side in thermally coupled tri‐reformer and steam reformer reactor are methane feed rate and temperature equal to 9264.4 kmol h?1 and 1100 K, respectively. By increasing the feed flow rate of tri‐reforming side from 28,120 to 140,600 kmol h?1, methane conversion and H2 yield at the output of steam reforming side enhanced about 63.4% and 55.2%, respectively. Also by increasing the inlet temperature of tri‐reforming side from 900 to 1300 K, CH4 conversion and H2 yield at the output of steam reforming side enhanced about 82.5% and 71.5%, respectively. The results showed that methane conversion at the output of steam and tri‐reforming sides reached to 26.5% and 94%, respectively with the feed temperature of 1100 K of tri‐reforming side. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, a novel thermally coupled reactor containing the naphtha reforming process in the endothermic side and the hydrogenation of nitrobenzene to aniline in the exothermic side has been investigated. Considering the higher thermal efficiency as well as the smaller size of the reactor, utilizing the recuperative coupled reactor is given priority. In this novel configuration, the first and the second reactor of the conventional naphtha reforming process have been substituted by the recuperative coupled reactors which contain the naphtha reforming reactions in the shell side, and the hydrogenation reaction in the tube side. The achieved results of this simulation have been compared with the results of the conventional fixed-bed naphtha reforming reactors. Acceptable enhancement can be noticed in the performance of the reactors. The production rate of the high octane aromatics and the consumption rate of the paraffins have improved 17% and 72%, respectively. The conversion of the nitrobenzene is acceptable and the effect of the number of the tubes also has been taken into account. However, the performance of the new configuration needs to be tested experimentally over a range of parameters under practical operating conditions.  相似文献   

4.
Refineries have been looking for proper ways of improving reformer performance by enhancing the octane number of the product via increasing the aromatics’ compounds. To reach this goal, the endothermic catalytic naphtha reforming is coupled with the exothermic hydrogenation of nitrobenzene to aniline in a multifunctional heat exchanger reactor through the process intensification concept. Considering the higher thermal efficiency as well as the smaller size of the coupled reactor, utilizing this reactor is given priority. In this novel configuration, the first and the second reactor of the conventional naphtha reforming process are exchanged with the coupled reactors contain the endothermic naphtha reforming in the shell side and the hydrogenation reaction in the tube side. Both co-current and counter-current modes of flow are examined during the operation considering various studies in literature which show the superiority of co-current flow compared with the counter-current flow. The result of current study is compared with the corresponding results for conventional tubular reactor (CTR). The results show higher aromatic production as much as 18.73% and 16.48% in the co-current and counter-current mode, respectively. Hydrogen molar flow rate increases about 5 kmol/h by using counter-current flow regime, compared with the CTR.  相似文献   

5.
A numerical study of aniline production by hydrogenation of nitrobenzene (NBH) and hydrogen production by steam methane reforming (SMR) in a directly coupled membrane reactor is developed. This membrane reactor was proposed aiming to decarbonize heating in SMR and to favor the recovery of all products. Aniline recovery is improved in this reactor as water, a byproduct in NBH, is consumed in SMR. The simulation is performed using a heterogeneous-one dimensional model (Dusty gas model) and results are compared against the homogeneous model. The operating conditions of the reactor were selected using a multi-objective optimization method, genetic algorithms. The aims of the optimization were: methane conversion maximization, minimum membrane area, minimum reactor size, hydrogen yield maximization, nitrobenzene conversion maximization and the maximization of hydrogen recovery. This process was able to achieve complete conversion of methane and nitrobenzene. The hydrogen yield achieved can be as high as the maximum (~4). 35% of this hydrogen was used as a reactant for aniline production. 99% of the unreacted hydrogen was recovered and purified. As the steam flow was minimized, aniline was obtained with a molar composition (70%), 2.1 times higher than that obtained in a conventional process for aniline production (33%). CO2 was obtained with a purity of 97%, hence, CO2 carbon capture and storage techniques were also favored. In addition, the energy requirements of heating of feedstock, reaction and recovery system of this novel process was 2.7 times lower than that of conventional processes carried out independently.  相似文献   

6.
A novel concept for hydrogen generation by methane steam reforming in a thermally coupled catalytic fixed bed membrane reformer is experimentally demonstrated. The reactor, built from three concentric compartments, indirectly couples the endothermic methane steam reforming with the exothermic methane oxidation, while hydrogen is separated by a permselective Pd membrane. The study focuses on the determination of the key operation parameters and understanding their influence on the reactor performance. It has been shown that the reactor performance is mainly defined by the dimensionless ratio of the methane steam reforming feed flow rate to the hydrogen maximal membrane flow rate and by the ratio of the oxidation and steam reforming methane feed flow rates.  相似文献   

7.
Advancements in the catalytic naphtha reforming process, as one of the main processes in petrochemical industry, contributed to development of continuous catalytic regenerative naphtha reformer units. Increasing the yield of aromatic and hydrogen as well as saving the energy in this process through the application of thermal coupling technique is a potentially interesting idea. This novel idea has been assessed in this paper. In the proposed configuration, continuous catalyst regeneration naphtha reforming process is coupled with hydrogenation of nitrobenzene in a two co-axial reactor separated by a solid wall, where the generated heat in nitrobenzene hydrogenation reaction transfers to naphtha reforming reaction medium through the surface of the tube. A steady-state, homogeneous, two-dimensional model is used to describe the performance of this configuration and a kinetic model including 32 pseudo-components with 84 reactions is considered for naphtha reforming reaction. After validating the model with the commercial data of a domestic plant, the obtained results of coupled reactor are compared by the conventional one. The obtained results show the superiority of CCR coupled reactor against the conventional one.  相似文献   

8.
In the recent years, refineries have focused on developing new ways to gain more from their asset utilization owing to increasing demand for high octane gasoline. In this regard, a thermally coupled fluidized bed naphtha reactor (TCFBNR) is proposed in this study. The first and the second reactors of a conventional catalytic naphtha reactor configuration (CR) are substituted by thermally coupled fluidized bed reactors. In this novel configuration, naphtha reforming reactions which are highly endothermic are coupled with the exothermic hydrogenation of nitrobenzene to aniline. Some drawbacks of CR such as pressure drop, internal mass transfer limitation and radial gradient of concentration and temperature are successfully solved in this novel configuration. In addition to some mentioned advantages of this novel configuration, TCFBNR configuration enhances the aromatic production rate about 20.54% and 7.13% higher than CR and TCNR, respectively. Also, the TCFBNR is capable to enhance hydrogen production rate in the shell side, the aniline flow rate in the tube section and simultaneously improves the thermal behavior of endothermic side and reduces the undesirable temperature drop. The modeling results of TCFBNR is compared with the results of CR and thermally coupled fixed-bed naphtha reactor (TCNR). These studies provide a good initial insight for some modifications and revamping of the old facilities with more efficient ones.  相似文献   

9.
The paper aims to investigate the steam reforming of biogas in an industrial-scale reformer for hydrogen production. A non-isothermal one dimensional reactor model has been constituted by using mass, momentum and energy balances. The model equations have been solved using MATLAB software. The developed model has been validated with the available modeling studies on industrial steam reforming of methane as well as with the those on lab-scale steam reforming of biogas. It demonstrates excellent agreement with them. Effect of change in biogas compositions on the performance of industrial steam reformer has been investigated in terms of methane conversion, yields of hydrogen and carbon monoxide, product gas compositions, reactor temperature and total pressure. For this, compositions of biogas (CH4/CO2 = 40/60 to 80/20), S/C ratio, reformer feed temperature and heat flux have been varied. Preferable feed conditions to the reformer are total molar feed rate of 21 kmol/h, steam to methane ratio of 4.0, temperature of 973 K and pressure of 25 bar. Under these conditions, industrial reformer fed with biogas, provides methane conversion (93.08–85.65%) and hydrogen yield (1.02–2.28), that are close to thermodynamic equilibrium condition.  相似文献   

10.
Hydrogen is one of the most abundant elements on Earth's surface. It is not in nature in its pure form, but it can produce by various methods such as methanol steam reforming, partial oxidation, electrolysis, etc. In the present study, using the mass and energy conservation law, hydrogen production in coupled membrane reactors has been modeled using the methanol steam reforming process using two different methods in the coupled membrane reactor. A separate (fresh) methanol is used as feed for the combustion section in the first method. While in the second method, the reformer reactor's output material is used as feed for the combustion section. After simplifying using the required assumptions, the governing equations solved using the ode45 (shooting method) numerical method using MATLAB software. The results of this study show that the conversion of methanol in the coupled membrane reactor when separate methanol is used as feed in the combustion reactor, while in the same reactor, the output material of the reformer section used as feed in the combustion section, is 92% and 88.5% respectively. In this study, the effect of different parameters on the methanol conversion rate is investigated. Finally, it found that with increasing temperature and pressure and decreasing membrane thickness in coupled membrane reactors, methanol conversion rate increases. The percentage of hydrogen recovery in the two coupled membrane reactors is almost equal to 92%.  相似文献   

11.
This work presents the techno-economic assessment for a new process where a fluidized bed heat exchanger (FBHE) is used as heat source for steam reforming in a hydrogen production plant. This suggested process configuration is compared with a reference case representing a conventional steam methane reforming (SMR) large-scale hydrogen production plant. The use of a FBHE as a heat source for the endothermic reforming is an advantage because of the high heat transfer coefficient to the reformer tubes. The suggested process configuration utilizes oxygen carrier particles as bed material and a bubbling fluidized bed reactor with immersed reformer tubes to ensure sufficient heat production for the reforming and improved heat transfer to the reformer tubes compared a conventional plant. The results include a comparison of hydrogen production efficiency and levelized production costs (LCOH) of the two plants where the production efficiency is more than 11% higher and the LCOH is more than 7% lower for the suggested process configuration.  相似文献   

12.
Mass, heat and momentum transport processes are coupled with catalytic chemical reactions in a methane steam reforming duct. It is often found that endothermic and exothermic reactions in the ducts are strongly integrated by heat transfer from adjacent catalytic combustion ducts. In this paper, a three-dimensional calculation method is developed to simulate and analyze reforming reactions of methane, and the effects on various transport processes in a steam reforming duct. The reformer conditions such as mass balances associated with the reforming reactions and gas permeation to/from the porous catalyst reforming layer are applied in the analysis. The predicted results are presented and discussed for a composite duct consisting of a porous catalyst reaction layer, the fuel gas flow duct and solid layers. Parametric studies are conducted to reveal the importance of reformer designs and operating conditions. The results show that the variables, such as porous layer configuration, temperature and catalyst loading, have significant effects on the transport processes and reformer performance.  相似文献   

13.
The paper presents a configuration of mini CHP with the methane reformer and planar solid oxide fuel cell (SOFC) stacks. This mini CHP may produce electricity and superheated steam as well as preheat air and methane for the reformer along with cathode air used in the SOFC stack as an oxidant. Moreover, the mathematical model for this power plant has been created. The thermochemical reactor with impeded fluidized bed for autothermal steam reforming of methane (reformer) considered as the basis for the synthesis gas (syngas) production to fuel SOFC stacks has been studied experimentally as well. A fraction of conversion products has been oxidized by the air fed to the upper region of the impeded fluidized bed in order to carry out the endothermic methane steam reforming in a 1:3 ratio as well as to preheat products of these reactions. Studies have shown that syngas containing 55% of hydrogen could be produced by this reactor. Basic dimensions of the reactor as well as flow rates of air, water and methane for the conversion of methane have been adjusted through mathematical modelling.The paper provides heat balances for the reformer, SOFC stack and waste heat boiler (WHB) intended for generating superheated water steam along with preheating air and methane for the reformer as well as the preheated cathode air. The balances have formed the basis for calculating the following values: the useful product fraction in the reformer; fraction of hydrogen oxidized at SOFC anode; gross electric efficiency; anode temperature; exothermic effect of syngas hydrogen oxidation by air oxygen; excess entropy along with the Gibbs free energy change at standard conditions; electromotive force (EMF) of the fuel cell; specific flow rate of the equivalent fuel for producing electric and heat energy. Calculations have shown that the temperature of hydrogen oxidation products at SOFC anode is 850 °C; gross electric efficiency is 61.0%; EMF of one fuel cell is 0.985 V; fraction of hydrogen oxidized at SOFC anode is 64.6%; specific flow rate of the equivalent fuel for producing electric energy is 0.16 kg of eq.f./(kW·h) while that for heat generation amounts to 44.7 kg of eq.f./(GJ). All specific parameters are in agreement with the results of other studies.  相似文献   

14.
This paper presents a study on optimization of a fixed bed tri-reformer reactor (TR). This reactor has been used instead of conventional steam reformer (CSR) and auto thermal reformer (CAR). A theoretical investigation has been performed in order to evaluate the optimal operating conditions and enhancement of methane conversion, hydrogen production and desired H2/CO ratio as a synthesis gas for methanol production. A mathematical heterogeneous model has been used to simulate the reactor. The process performance under steady state conditions was analyzed with respect to key operational parameters (inlet temperature, O2/CH4, CO2/CH4 and steam/CH4 ratios). The influence of these parameters on gas temperature, methane conversion, hydrogen production and H2/CO ratio was investigated. Model validation was carried out by comparison of the reforming model results with industrial data of CSR. Differential evolution (DE) method was applied as a powerful method for optimization. Optimum feed temperature and reactant ratios (CH4/CO2/H2O/O2) are 1100 K and 1/1.3/2.46/0.47 respectively. The optimized TR has enhanced methane conversion by 3.8% relative to industrial reformers in a single reactor. Methane conversion, hydrogen yield and H2/CO ratio in optimized TR are 97.9%, 1.84 and 1.7 respectively. The optimization results of tri-reformer were compared with the corresponding predictions from process simulation software operated at the same feed conditions.  相似文献   

15.
An innovative steam reformer for hydrogen production at temperatures lower than 550 °C has been developed in the EU project CoMETHy (Compact Multifuel-Energy To Hydrogen converter). The steam reforming process has been specifically tailored and re-designed to be combined with Concentrating Solar plants using “solar salts”: a low-temperature steam reforming reactor was developed, operating at temperatures up to 550 °C, much lower than the traditional process (usually > 850 °C). This result was obtained after extensive research, going from the development of basic components (catalysts and membranes) to their integration in an innovative membrane reformer heated with molten salts, where both hydrogen production and purification occur in a single stage. The reduction of process temperatures is achieved by applying advanced catalyst systems and hydrogen selective Pd-based membranes. Process heat is supplied by using a low-cost and environmentally friendly binary NaNO3/KNO3 liquid mixture (60/40 w/w) as heat transfer fluid; such mixture is commonly used for the same purpose in the concentrating solar industry, so that the process can easily be coupled with concentrating solar power (CSP) plants for the supply of renewable process heat. This paper deals with the successful operation and validation of a pilot scale reactor with a nominal capacity of 2 Nm3/h of pure hydrogen from methane. The plant was operated with molten salt circulation for about 700 h, while continuous operation of the reactor was achieved for about 150 h with several switches of operating conditions such as molten salts inlet temperature, sweep steam flow rate and steam-to-carbon feed ratio. The results obtained show that the membrane reformer allows to achieve twice as high a conversion compared to a conventional reformer operating at thermodynamic equilibrium under the same conditions considered in this paper. A highly pure hydrogen permeate stream was obtained (>99.8%), while the outlet retentate stream had low CO concentration (<2%). No macroscopic signs of reactor performance loss were observed over the experimental operation period.  相似文献   

16.
Efficient conversion of methane to hydrogen has emerged as a significant challenge to realizing fuel cell-based energy systems. Autothermal microchannel reactors, coupling of exothermic and endothermic reactions in parallel channels, have become one of the most promising technologies in the field of hydrogen production. Such reactors were utilized as an intensified design for conducting the endothermic steam methane reforming reaction. The energy required by the endothermic process is supplied directly through the separating plates of the reactor structure from the exothermic process occurring on the opposing side. Optimal design problems associated with transport phenomena in such an autothermal system were analyzed. Various methods for designing and operating autothermal reactors employed in steam methane reforming were discussed. Computational fluid dynamics simulations were performed to identify the underlying principles of process intensification, and to delineate several design and operational features of the intensified reforming process. The results indicated that the autothermal reactor is preferable to be thermally conductive to ensure its structural integrity and maximum operating regime. However, the thermal properties of the reactor structure are not essential due to efficient heat transfer existing between endothermic and exothermic process streams. A reactor design which minimizes the mass transfer resistance is highly required, and the channel dimension is of critical importance. Furthermore, the challenges presented by the efficient operation of the autothermal system were identified, along with demonstrating the implementation of transport management in order to improve overall reactor performance and to mitigate extreme temperature excursions.  相似文献   

17.
Combined methane and ethanol steam reforming has been carried out in a conventional reformer filled with a Pt (0.5% wt.) catalyst bed. The reformer has been coupled with a multi-membrane module, where pure hydrogen has been recovered in the shell side by vacuum pumping.  相似文献   

18.
In this study a numerical analysis of hydrogen production via an autothermal reforming reactor is presented. The endothermic reaction of steam methane reforming and the exothermic combustion of methane were activated with patterned Ni/Al2O3 catalytic layer and patterned Pt/Al2O3 catalytic layer, respectively. Aiming to achieve a more compacted process, a novel design of a reactor was proposed in which the reforming and the combustion catalysts were modeled as patterned thin layers. This configuration is analyzed and compared with two configurations. In the first configuration, the catalysts are modeled as continuous thin layers in parallel, while, in the second configuration the catalysts are modeled as continuous thin layers in series (conventional catalytic autothermal reactor). The results show that the pattern of the catalyst layers improves slightly the hydrogen yield, i.e. 3.6%. Furthermore, for the same concentration of hydrogen produced, the activated zone length can be decreased by 38% and 15% compared to the conventional catalytic autothermal reforming and the configuration where the catalysts are fitted in parallel, respectively. Besides, the oxygen consumption is lowered by 5%. The decrement of the catalyst amount and the oxygen feedstock in the novel studied design lead to lower costs and compact process.  相似文献   

19.
Coupling energy intensive endothermic reaction systems with suitable exothermic reactions improve the thermal efficiency of processes and reduce the size of the reactors. One type of reactor suitable for such a type of coupling is the heat-exchanger reactor. In this work, a distributed mathematical model for thermally coupled membrane reactor that is composed of three sides is developed for methanol and benzene synthesis. Methanol synthesis takes place in the exothermic side and supplies the necessary heat for the endothermic dehydrogenation of cyclohexane reaction. Selective permeation of hydrogen through the Pd/Ag membrane is achieved by co-current flow of sweep gas through the permeation side. A steady-state heterogeneous model of the two fixed beds predicts the performance of this novel configuration. The co-current mode is investigated and the simulation results are compared with corresponding predictions for an industrial methanol fixed-bed reactor operated at the same feed conditions. The results show that although methanol productivity is the same as conventional methanol reactor, but benzene is also produced as an additional valuable product in a favorable manner, and auto-thermal conditions are achieved within the both reactors and also pure hydrogen is produced in permeation side. This novel configuration can increase the rate of methanol synthesis reaction and shift the thermodynamics equilibrium. The performance of the reactor is numerically investigated for various key operating variables such as inlet temperatures, molar flow rates of exothermic and endothermic streams, membrane thickness and sweep gas flow rate. The reactor performance is analyzed based on methanol yield, cyclohexane conversion and hydrogen recovery yield. The results suggest that coupling of these reactions in the presence of membrane could be feasible and beneficial. Experimental proof-of-concept is needed to establish the validity and safe operation of the novel reactor.  相似文献   

20.
Methane reforming is the most important and economical process for hydrogen and syngas generation. In this work, the dynamic simulation of methane steam reforming in an industrial membrane reformer for synthesis gas production is developed. A novel deactivation model for commercial Ni-based catalysts is proposed and the monthly collected data from an existing reformer in a domestic methanol plant is used to optimize the model parameters. The plant data is also employed to check the model accuracy. It was observed that the membrane reformer could compensate for the catalyst deactivating effect.In order to assure the long membrane lifetime and decrease the unit price, the membrane reformer with 5 μm thick Pd on stainless steel supports is modeled at the temperature below the maximum operating temperature of Pd based membranes (around 600 °C). The dynamic modeling showed that the methane conversion of 76% could be achieved at a moderate temperature of 600 °C for an industrial membrane reformer. The cost-effective generation of syngas with an appropriate H2/CO ratio of 2.6 could be obtained by membrane reformer. This is while the conventional reformer exhibits a maximum conversation of 64 at 1200 °C challenging due to its high syngas ratio (3.7). On the other hand, the pure hydrogen from membrane reformer can supply part of the ammonia reactor feed in an adjacent ammonia plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号