首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perovskite-type oxide catalysts LaNiO3 and La1−xCexNiO3 (x ≤ 0.5) were prepared by the Pechini method and used as catalysts for carbon dioxide reforming of methane to form synthesis gas (H2 + CO). The gaseous reactants consisted of CO2 and CH4 in a molar ratio of 1:1. At a GHSV of 10,000 hr−1, CH4 conversion over LaNiO3 catalyst increased from 66% at 600 °C to 94% at 800 °C, while CO2 conversion increased from 51% to 92%. The achieved selectivities of CO and H2 were 33% and 57%, respectively, at 600 °C. To prevent the deposition of carbon and the sintering nickel species, some of the Ni in perovskite-type oxide catalyst was substituted by Ce. Ce provided lattice oxygen vacancies, which activated C–H bonds, and increased the selectivity of H2 to 61% at 600 °C. XRD analysis indicates that the catalyst exhibited a typical perovskite spinel structure and formed La2O2CO3 phases after CO2 reforming. The FE-SEM results reveal carbon whisker of the LaNiO3 catalyst and the BET analysis indicates that the specific surface area increases after the reforming reaction. The H2-TPR results confirm that Ce metals can store and provide oxygen.  相似文献   

2.
Hydrogen production via steam reforming of methanol is carried out over Cu/(Ce,Gd)O2−x catalysts at 210–600 °C. The CO content in reformate is about 1% at 210–270 °C, which are the typical temperature for hydrogen production via steam reforming of methanol. Largest H2 yield and CO2 selectivity and smallest CO content are obtained at 240 °C. The formation rate of CO increases with increasing temperature. The average formation rate of CO becomes larger than that of CO2 at about 450 °C. The H2 yield, the CO2 selectivity and the CO content become constant at about 550 °C. At 240 °C, the smallest CO content is obtained with a catalyst weight of 0.5 g and a Cu content of 3 wt%. The H2 yield, defined as H2/(CO + CO2) in formation rates, at 240 °C is always 3 and not affected by the variations of either the catalyst weight or the Cu content.  相似文献   

3.
Mineral clay modified with Al, polyvinyl alcohol (PVA) and microwaves was used as a support to obtain a Ni-Pr catalyst. This catalytic system was evaluated in the reforming of methane with CO2. The experiments were carried out under drastic conditions for 300 min, with a 50/50 CH4/CO2 mixture, total flux of 80 mL min−1, without dilution gas (WHSV = 96 Lg−1h−1) and without previous reduction. The effect of the calcination temperature of the materials was studied at 500 °C and 800 °C as well as the effect of Pr (evaluating nominal quantities of 0, 1, 3 and 5%). The calcination temperature of the solid influenced the formation of the NiO species which had an effect on the activity and formation of coke on the material. The Pr had a promoter effect on the activity of the catalysts increasing the conversions of the CH 4 as well as the CO2. The formation of coke for the catalysts calcined at 500 °C presented a correlation with the praseodymium content while for those catalysts calcined at 800 °C there was no formation of coke.  相似文献   

4.
Au/α-Fe2O3 was combined with a CO2-sorbent (3-aminopropyltriethoxysilane (APTES) grafted on SBA-15 and hereafter denoted as APTES/SBA-15) to enhance preferential oxidation (PROX) of CO in H2. The CO2 molecules could be rapidly adsorbed on APTES/SBA-15 at low temperatures below 50 °C with a capacity of 0.68 mmol CO2/g-sample, and desorbed at a temperature range of 50 °C–80 °C. Three different configurations of the Au/α-Fe2O3 catalyst and the CO2-sorbent were tested in the PROX reaction, namely (i) the sorbent-free (catalyst//SBA-15//catalyst) configuration, (ii) the packed three-layer configuration (catalyst//CO2-sorbent//catalyst), and (iii) the mechanically mixed catalyst and CO2-sorbent configuration. Compared to configuration (i), configuration (ii) achieved an average 10% higher CO conversion at 50 °C and a GHSV of 65000 h−1. However, the CO concentration could not be lowered to below 70 ppm from 2000 ppm using configuration (ii) at a GHSV of 10000 h−1. Thus, a 5-layer configuration (catalyst//CO2-sorbent//catalyst//CO2-sorbent//catalyst) was used, and the CO concentration was lowered to ca. 25 ppm. The mechanism for enhancement of the PROX reaction by the continuous removal of CO2 by the CO2-sorbent is discussed and attributed to reduction of the surface carbonate on the Au/α-Fe2O3 catalyst formed during the PROX process.  相似文献   

5.
MFI zeolite membranes were synthesized on porous α-alumina hollow fibers by in-situ hydrothermal synthesis. The membranes were further modified for H2 separation by on-stream catalytic cracking deposition of methyldiethoxysilane (MDES) in the zeolitic pores. The separation performance of the modified membranes was characterized by separation of H2/CO2 gas mixture at 500 °C. Activation of MFI zeolite membranes by air at 500 °C was found to promote catalytic cracking deposition of silane in the zeolitic pores effectively, which resulted in significant improvement of H2-separating performance. The H2/CO2 separation factor of 45.6 with H2 permeance of 1.0 × 10−8 mol m−2 s−1 Pa−1 was obtained at 500 °C for a modified hollow fiber MFI zeolite membrane. The as-made membranes showed good thermochemical stability for the separation of H2/CO2 gas mixture containing H2O and H2S, respectively.  相似文献   

6.
Sm0.2Ce0.8O1.9 (SDC)/Na2CO3 nanocomposite synthesized by the co-precipitation process has been investigated for the potential electrolyte application in low-temperature solid oxide fuel cells (SOFCs). The conduction mechanism of the SDC/Na2CO3 nanocomposite has been studied. The performance of 20 mW cm−2 at 490 °C for fuel cell using Na2CO3 as electrolyte has been obtained and the proton conduction mechanism has been proposed. This communication demonstrates the feasibility of direct utilization of methanol in low-temperature SOFCs with the SDC/Na2CO3 nanocomposite electrolyte. A fairly high peak power density of 512 mW cm−2 at 550 °C for fuel cell fueled by methanol has been achieved. Thermodynamical equilibrium composition for the mixture of steam/methanol has been calculated, and no presence of C is predicted over the entire temperature range. The long-term stability test of open circuit voltage (OCV) indicates the SDC/Na2CO3 nanocomposite electrolyte can keep stable and no visual carbon deposition has been observed over the anode surface.  相似文献   

7.
The catalytic performance in the direct CO2 methanation of a model biogas is investigated on NiO–CeO2 nanostructured mixed oxides synthesized by the soft-template procedure with different Ni/Ce molar ratios. The samples are thoroughly characterized by means of ICP-AES, XRD, TEM and HR-TEM, N2 physisorption at −196 °C, and H2-TPR. They result to be constituted of CeO2 rounded nanocrystals and of polycrystalline needle-like NiO particles. After a H2-treatment at 400 °C for 1 h, the surface basic properties and the metal surface area are also assessed using CO2 adsorption microcalorimetry and H2-pulse chemisorption measurements, respectively. At increasing Ni content the Ni0 surface area increases, while the opposite occurs for the number of basic sites. Using a CO2/CH4/H2 feed, at 11,000 cm3 h−1 gcat−1, CO2 conversions in the 83–89 mol% range and methane selectivities >99.5 mol% are reached at 275 °C and atmospheric pressure, highlighting the very good performances of the investigated catalysts.  相似文献   

8.
The composite cathodes with lanthanum-based iron and cobalt-containing perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and Ce0.9Gd0.1O1.95 (GDC) are investigated for solid oxide fuel cell (SOFC) applications at relatively low operating temperatures (700-800 °C). LSCFs with high surface areas of 55 m2g−1 are synthesized via a complex method with inorganic nano dispersants. The fuel cell performances of composite cathodes on anode supported SOFCs are characterized with GDC materials of surface areas of 5 m2g−1 (ULSA-GDC), 12 m2g−1 (LSA-GDC), and 23 m2g−1 (HAS-GDC). The maximum power density of the SOFCs increases from 0.68 Wcm−2 to 1.2 Wcm−2 at 780 °C and 0.8 V as the GDC surface area increases from 5 m2g−1 to 23 m2g−1. The area specific resistance of the porous composite cathodes with a HAS-GDC are 0.467 ohmcm2 at 780 °C and 1.086 ohmcm2 at 680 °C, while these values with an LSA-GDC are 0.543 ohmcm2 and 0.945 ohmcm2, respectively. The best compositions of the porous composite cathodes result from the morphologies of the GDC materials at each temperature due to the formation of an electron-oxygen ion-gas boundary.  相似文献   

9.
Co/CeO2 (Co 7.5 wt.%), Ni/CeO2 (Ni 7.5 wt.%) and Co–Ni/CeO2 (Co 3.75 wt.%, Ni 3.75 wt.%) catalysts were prepared by surfactant assisted co-precipitation method. Samples were characterized by X-Ray diffraction, BET surface areas measurements, temperature programmed reduction and tested for the dry reforming of methane CH4 + CO2 → 2CO + 2H2 in the temperature range 600–800 °C with a CH4:CO2:Ar 20:20:60 vol.% feed mixture and a total flow rate of 50 cm3 min−1 (GHSW = 30,000 mL g−1 h−1). The bimetallic Co–Ni/CeO2 catalyst showed higher CH4 conversion in comparison with monometallic systems in the whole temperature range, being 50% at 600 °C and 97% at 800 °C. H2/CO selectivity decreased in the following order: Co–Ni/CeO2 > Ni/CeO2 > Co/CeO2. Carbon deposition on spent catalysts was analyzed by thermal analysis (TG-DTA). After 20 h under stream at 750 °C, cobalt-containing catalysts, Co/CeO2 and Co–Ni/CeO2, showed a stable operation in presence of a deposited amorphous carbon of 6 wt.%, whereas Ni/CeO2 showed an 8% decrease of catalytic activity due to a massive presence of amorphous and graphitic carbon (25 wt.%).  相似文献   

10.
A Ni–Co bimetallic catalyst, Ni–Co/La2O3/Al2O3, was prepared by conventional incipient wetness impregnation. It shows a high level of activity and excellent stability for biogas reforming. This work examines how operating conditions, such as the reaction temperature, operating pressure, feed ratio, gas hourly space velocity (GHSV), and CO2 excessive coefficient, affect the catalytic performances of the catalyst. The experimental biogas is simulated with CH4 and CO2 at a molar ratio of 1, without any dilute gas. The catalyst was also characterized by XRD, BET, TEM and TG-DSC. In a stability test of 510 h under the conditions of 800 °C, 1 atm, and a GHSV of 6000 ml gcat−1 h−1, the average coking rate over the catalyst was only about 0.0374 mg gcat−1 h−1. The experimental results also indicate that the dynamic equilibrium between the deposition and gasification of carbon deposited on the surface of the catalyst can be established during the reaction. The aggregation of metallic Ni/Co and the formation of filamentous carbon over the surface of the catalyst can be inhibited effectively. During the last 50 h of the 510 h stability test, the average conversion of CH4 and CO2, the selectivity to H2 and CO, and ratio of H2/CO were 95.2%, 96.7%, 95.0%, 98.3%, and 0.96, respectively.  相似文献   

11.
The pre-reforming of higher hydrocarbon, propane, was performed to generate hydrogen from LPG without carbon deposition on the catalysts. A Ru/Ni/MgAl2O4 metallic monolith catalyst was employed to minimize the pressure drop over the catalyst bed. The propane pre-reforming reaction conditions for the complete conversion of propane with no carbon formation were identified to be the following: space velocities over 2400 h−1 and temperatures between 400 and 450 °C with a H2O/C1 ratio of 3. The combined pre-reformer and the main reformer system with the Ru/Ni/MgAl2O4 metallic monolith catalyst was employed to test the conversion propane to syngas where the reaction heat was provided by catalytic combustors. Propane was converted in the pre-reformer to 52.5% H2, 27.0% CH4, 17.5% CO, and 3.0% CO2 with a 331 °C inlet temperature and a 482 °C catalyst outlet temperature. The main steam reforming reactor converted the methane from the pre-reformer with a conversion of higher than 99.0% with a 366 °C inlet temperature and an 824 °C catalyst outlet temperature. With a total of 912 cc of the Ru/Ni/MgAl2O4 metallic monolith catalyst in the main reformer, the H2 production from the propane reached an average of 3.25 Nm3h−1 when the propane was fed at 0.4 Nm3h−1.  相似文献   

12.
In this work high quality cobalt oxide silica membranes were synthesized on alumina supports using a sol–gel, dip coating method. The membranes were subsequently connected into a steel module using a graphite based proprietary sealing method. The sealed membranes were tested for single gas permeance of He, H2, N2 and CO2 at temperatures up to 600 °C and feed pressures up to 600 kPa. Pressure tests confirmed that the sealing system was effective as no gas leaks were observed during testing. A H2 permeance of 1.9 × 10−7 mol m−2 s−1 Pa−1 was measured in conjunction with a H2/CO2 permselectivity of more than 1500, suggesting that the membranes had a very narrow pore size distribution and an average pore diameter of approximately 3 Å. The high temperature testing demonstrated that the incorporation of cobalt oxide into the silica matrix produced a structure with a higher thermal stability, able to resist thermally induced densification up to at least 600 °C. Furthermore, the membranes were tested for H2/CO2 binary feed mixtures between 400 and 600 °C. At these conditions, the reverse of the water gas shift reaction occurred, inadvertently generating CO and water which increased as a function of CO2 feed concentration. The purity of H2 in the permeate stream significantly decreased for CO2 feed concentrations in excess of 50 vol%. However, the gas mixtures (H2, CO2, CO and water) had a more profound effect on the H2 permeate flow rates which significantly decreased, almost exponentially as the CO2 feed concentration increased.  相似文献   

13.
Hierarchical porous graphene-based carbons (HPGCs) have been prepared by a simple carbon dioxide activation of graphite oxide. The effects of activation temperature on the structural and textural properties as well as gas adsorption capacities of the resultant carbons have been investigated. The HPGCs showed hierarchically micro-meso-macroporous structures, high specific surface areas of up to 532 m2 g−1, and large pore volumes of up to 1.67 cm3 g−1. Moreover, the HPGC materials were demonstrated to be efficient for CO2 and H2 adsorption. The HPGC-850, which was obtained after two hours of activation at 850 °C, exhibited the highest adsorption capacities of 7.74 wt% (1.76 mmol g−1) at 273 K and 1 bar for CO2 and of 0.75 wt% (3.76 mmol g−1) at 77 K and 1 bar for H2.  相似文献   

14.
Double-layered perovskite oxides of Sm1−xBaCo2O5+δ (S1−xBCO) with various A-site Sm3+-deficiencies (x = 0.00–0.08) were synthesized and evaluated as cathode materials of intermediate-temperature solid oxide fuel cells (IT-SOFCs). The Sm3+-deficiency content in S1−xBCO was limited up to x = 0.05, and higher content x = 0.08 caused impurity phase. S1−xBCO oxides were chemically stable with GDC electrolyte at 1050 °C and below. Introduction of Sm3+-deficiency caused decreased oxygen content and increased concentration of oxygen vacancy in S1−xBCO. Electrical conductivities of S1−xBCO decreased with increasing temperature in air, and also changed with the Sm3+-deficiency content. Electrochemical performance of S1−xBCO cathodes were characterized by impedance spectra measurement based on symmetric cells. Higher Sm3+ deficiency content has resulted in decreased area specific resistances (ASRs) and activation energy (Ea), i.e. enhanced electrochemical reaction reactivity for the S1−xBCO cathodes. Among the studied samples, the S0.95BCO (x = 0.05) oxide showed the best electrochemical performance with ASR values of 0.316 Ω cm2 at 600 °C, 0.137 Ω cm2 at 650 °C, 0.068 Ω cm2 at 700 °C and 0.038 Ω cm2 at 750 °C respectively, thus it's a promising cathode material of IT-SOFCs.  相似文献   

15.
Solid Oxide Electrolyzer Cells (SOECs) are promising energy devices for the production of syngas (H2/CO) by H2O and/or CO2 electrolysis. Here we developed a Cu–Ce0.9Gd0.1O2−δ/Ce0.8Gd0.2O2−δ/Ba0.5Sr0.5Co0.8Fe0.2O3−δ-Ce0.8Gd0.2O2−δ cell and performed H2O and CO2 electrolysis experiments in the intermediate temperature range (600°C–700 °C). As a baseline, the cell was first tested in fuel cell operation mode; the sample shows a maximum power density peak of 104 mW cm−2 at 700 °C under pure hydrogen and air. H2O electrolysis testing revealed a steady production of hydrogen with a Faraday's efficiency of 32% at 700 °C at an imposed current density of −78 mA cm−2. CO production was observed during CO2 electrolysis but higher cell voltages were required. A lower efficiency of about 4% was obtained at 700 °C at an imposed current density of −660 mA cm−2. These results confirm that syngas production is feasible by water and carbon dioxide electrolysis but further improvements from both the manufacturing and the electrocatalytic aspects are needed to reach higher yields and efficiencies.  相似文献   

16.
CoNi/Al2O3 and MgCoNi/Al2O3 catalysts are investigated for hydrogen production from CO2 reforming of CH4 reaction at the gas hourly space velocity of 40,000 mL g−1 h−1. The MgO promoted CoNi/Al2O3 catalyst shows much higher conversions (97% for CO2 and 95% for CH4 at 850 °C) than the CoNi/Al2O3 catalyst. In addition, the stability is maintained for 200 h in CO2 reforming of CH4. The outstanding catalytic activity and stability of the MgO promoted CoNi/Al2O3 catalyst is mainly due to the basic nature of MgO, an intimate interaction between Ni and the support, and rapid decomposition/dissociation of CH4 and CO2, resulting in preventing coke formation in CO2 reforming of CH4.  相似文献   

17.
The water-gas shift (WGS) catalytic membrane reactor (CMR) incorporating a composite Pd-membrane and operating at elevated temperatures and pressures can greatly contribute to the efficiency enhancement of several methods of H2 production and green power generation. To this end, mixed gas permeation experiments and WGS CMR experiments have been conducted with a porous Inconel supported, electroless plated Pd-membrane to better understand the functioning and capabilities of those processes. Binary mixtures of H2/He, H2/CO2, and a ternary mixture of H2, CO2 and CO were separated by the composite membrane at 350, 400, and 450 °C, 14.4 bar (Ptube = 1 bar), and space velocities up to 45,000 h−1. H2 permeation inhibition caused by reversible surface binding was observed due to the presence of both CO and CO2 in the mixtures and membrane inhibition coefficients were estimated. Furthermore, WGS CMR experiments were conducted with a CO and steam feed at 14.4 bar (Ptube = 1 bar), H2O/CO ratios of 1.1-2.6, and GHSVs of up to 2900 h−1, considering the effect of the H2O/CO ratio as well as temperature on the reactor performance. Experiments were also conducted with a simulated syngas feed at 14.0 bar (Ptube  = 1 bar), and 400-450 °C, assessing the effect of the space velocity on the reactor performance. A maximum CO conversion of 98.2% was achieved with a H2 recovery of 81.2% at 450 °C. An optimal operating temperature for high CO conversion was identified at approximately 450 °C, and high CO conversion and H2 recovery were achieved at 450 °C with high throughput, made possible by the 14.4 bar reaction pressure.  相似文献   

18.
Blast furnace (BF) is a large-scale reactor for producing hot metal where coke and coal are consumed as reducing agent and fuel, respectively. As a result, a large amount of CO2 is liberated into the atmosphere. The blast furnace gas (BFG) and coke oven gas (COG) from the ironmaking process can be used for H2 production in association with carbon capture and storage (CCS), thereby reducing CO2 emissions. In this study thermodynamic analyses are performed to evaluate the feasibility of H2 production from BFG and COG. Through the water gas shift reaction (WGSR) of BFG, almost all CO contained in BFG can be converted for H2 production if the steam/CO (S/C) ratio is no less than unity and the temperature is at 200 °C, regardless of whether CO2 is captured or not. The maximum H2 production from WGSR is around 0.21 Nm3 (Nm3 BFG)−1. Regarding H2 production from COG, a two-stage reaction of partial oxidation (POX) followed by WGSR is carried out. It is found the proper conditions for syngas formation from the POX of COG is at the oxygen/fuel (O/F) ratio of 0.5 and the temperature range of 1000-1750 °C where the maximum syngas yield is 2.83 mol (mol hydrocarbons)−1. When WGSR is subsequently applied, the maximum H2 production from the two-stage reaction can reach 0.83 Nm3 (Nm3 COG)−1.  相似文献   

19.
Novel composite materials based on La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM) and a binary eutectic carbonates (52 mol% Li2CO3:48 mol% Na2CO3) are potential electrolytes for low-temperature solid oxide fuel cells (LTSOFCs) operating at 400–600 °C. However, thermal stability of the LSGM–(Li/Na)2CO3 composites remains in doubt due to the molten state of the carbonates at elevated temperature. In this paper, XRD, SEM, TGA and EIS were employed for thermal ageing and cycling studies of the LSGM–(Li/Na)2CO3 composites. XRD and SEM results showed that ageing induced a slight effect on the structure and morphology of the composites. TGA and EIS results indicated that the composites had a good stability during cycling. The LSGM–20 wt% (Li/Na)2CO3 sample showed a relatively stable conductivity (7–9 × 10−2 S cm−1) during a 650 h measurement under air at 600 °C. Single cell based on the composite electrolytes was reported for the first time, a maximum power density of 617 W cm−2 and the open circuit voltage (OCV) of 1.01 V were achieved at 600 °C for the composite containing 20 wt% carbonates. The notable thermal stability together with fairly high performance emphasize the promise of LSGM–(Li/Na)2CO3 composite electrolytes for long-term LTSOFCs.  相似文献   

20.
Electrical properties of 20 mol % Gd doped CeO2 with varying amounts of (LiNa)CO3 have been investigated by employing AC-impedance spectroscopic technique. The impedance spectra show a high frequency depressed arc, represents the bulk composite and low frequency incomplete semicircle representing electrode contribution. The bulk resistance of the composites decreases with increasing carbonate content up to 30 wt% (LiNa)CO3, thereafter the resistance increases, whereas all the compositions show a decrease in resistance with increasing temperature. The typical nature of the impedance spectra of the composite shows the possibility of coexistence of multi ionic transport or existence of space charge effect at the interface of Gd-CeO2 and carbonate phase. The composite containing 25 wt% (LiNa)CO3 shows the highest ionic conductivity of 0.1757 S cm−1 at 550 °C and lowest activation energy of 0.127 eV in the temperature range 550-800 °C. A symmetric cell is fabricated with GDC-25 wt% (LiNa)CO3 electrolyte, NiO-GDC(LiNa)CO3 anode and lithiated NiO-GDC(LiNa)CO3 cathode. Pure H2 and air are used as fuel and oxidant. The cell delivers a maximum power density of 45 mW/cm2, 58 mW/cm2 and 92 mW/cm2 at 450, 500 and 550 °C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号