首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Hydrogen is an ideal energy carrier and can play a very important role in the energy system. The present study investigated the enhancement of hydrogen production from catalytic dry reforming process. Two catalysts namely Ni/γ-Al2O3 and Co/γ-Al2O3 promoted with different amounts of strontium were used to explore selectivity and yield of hydrogen production. Spent and fresh catalysts were characterized using techniques such as BET, XRD, H2-TPR, CO2-TPD, TGA and O2-TPO. The catalyst activity and characterization results displayed stability improvement due to addition of Sr promoter. The least coke formations i.e. 3.8 wt% and 5.1 wt% were obtained using 0.75 wt% Sr doped in Ni/γ-Al2O3 and 0.5 wt% Sr doped in Co/γ-Al2O3 catalysts respectively. Time on stream tests of promoted catalysts for about six hours at 700 °C showed stable hydrogen selectivity. Moreover, the hydrogen selectivity was significantly improved by the addition of Sr in Ni and Co based catalysts. For instance the hydrogen selectivity increased from 45.9% to 47.8% for Ni/γ-Al2O3 and from 48% to 50.9% for Co/γ-Al2O3 catalyst by the addition of 0.75 wt% Sr in Ni/γ-Al2O3 and 0.5 wt% Sr in Co/γ-Al2O3 catalyst respectively.  相似文献   

2.
In total 17 heterogeneous catalysts, with combinations of 4 transition metals (Ni, Ru, Cu and Co) and various promoters (e.g., Na, K, Mg, or Ru) supported on different materials (γ-Al2O3, ZrO2, and activated carbon (AC)), were investigated with respect to their catalytic activity and stability for H2 production from glucose via supercritical water gasification (SCWG). The experiments were carried out at 600 °C and 24 MPa in a bench-scale continuous-flow tubular reactor. Ni (in metallic form) and Ru (in both metallic and oxidized forms) supported on γ-Al2O3 exhibited very high activity and H2 selectivity among all of the catalysts investigated for a time-on-stream of 5-10 h. With Ni20/γ-Al2O3 (i.e., γ-Al2O3 with 20 wt% Ni), a H2 yield of 38.4 mol/kg glucose was achieved, approximately 20 times higher than that obtained during the blank test without catalyst (1.8 mol/kg glucose). In contrast, Cu and Co catalysts were much less effective for glucose SCWG reactions. As for the effects of catalyst support materials on activity, the following order of sequence was observed: γ-Al2O3 > ZrO2 > AC. In addition, Mg and Ru were found to be effective promoters for the Ni/γ-Al2O3 catalyst, suppressing coke and tar formation.  相似文献   

3.
Autothermal reforming (ATR) of iso-octane in the presence of Rh-based catalysts (0.5 wt% of Rh) supported onto γ-Al2O3, CeO2, and ZrO2 were initially carried out at 700 °C with a S/C ratio of 2.0, an O/C ratio of 0.84, and a gas hourly space velocity (GHSV) of 20,000 h−1. The activity of Rh/γ-Al2O3 was found to be higher than Rh/CeO2 and Rh/ZrO2, with H2 and (H2 + CO) yields of 1.98 and 2.48 mol/mol C, respectively, after 10 h. This Rh/γ-Al2O3 material, however, was potentially susceptible to carbon coking and produced 3.5 wt% of carbon deposits following the reforming reaction, as evidenced by C, H, N, and S elemental analysis. In contrast, Rh/CeO2 catalyst exhibited lower activity but higher stability than Rh/γ-Al2O3, with nearly no carbon being formed within 10 h. To combine the superior activity originated from Rh/γ-Al2O3 with high stability from Rh/CeO2, Rh/CeO2/γ-Al2O3 catalysts with different CeO2 contents were synthesized and examined for the ATR reactions of iso-octane. Compared to Rh/γ-Al2O3, the newly prepared Rh/CeO2/γ-Al2O3 catalysts (0.5 wt% of Rh and 20 wt% of CeO2) showed even enhanced activity during 10 h, and H2 and (H2 + CO) yields were calculated to be 2.08 and 2.62 mol/mol C, respectively. In addition, as observed with Rh/CeO2, the catalyst was further found to be stable with less than 0.3 wt% of carbon deposition after 10 h. The Rh/γ-Al2O3 and Rh/CeO2/γ-Al2O3 catalysts were eventually tested for ATR reactions using commercial gasoline that contained sulfur, aromatics, and other impurities. The Rh/γ-Al2O3 catalyst was significantly deactivated, showing decreased activity after 4 h, while the Rh/CeO2/γ-Al2O3 catalyst proved to be excellent in terms of stability against coke formation as well as activity towards the desired reforming reaction, maintaining its ability for H2 production for 100 h.  相似文献   

4.
Gold catalysts on Y-doped ceria dispersed on high surface area γ-Al2O3 were synthesized and tested in preferential CO oxidation in hydrogen rich stream (PROX). The effect of ceria loading (10, 20 or 30 wt%) was studied. The gold catalyst with the lowest ceria amount exhibited the highest PROX activity. The addition of Y2O3 (1 wt%) led to improved performance. The most favorable effect was observed in the sample with 20 wt% ceria amount. This gold catalyst showed good PROX activity and stability in the presence of CO2 and water. Catalysts characterization by XRD, HRTEM/HAADF, XPS and H2-TPR was used to elucidate the relationship between the chemical composition, state of gold, support features and catalytic properties.  相似文献   

5.
Two kinds of Co-Mo bimetallic catalysts (i.e., CoMo-I/γ-Al2O3 and CoMo-II/γ-Al2O3) prepared by using different active phase precursors as well as Co and Mo monometallic catalysts were used to catalyze ammonia decomposition. The Co-Mo bimetallic catalysts show higher activity than the Co and Mo monometallic catalysts, indicating the synergistic effect between Co and Mo. More interestingly, the CoMo-I/γ-Al2O3 catalyst using monocomponent metal amine metallate (i.e., Co(en)3MoO4) as the active phase precursor exhibits higher activity and stability than the CoMo-II/γ-Al2O3 using bicomponent Co(NO3)2 and (NH4)6Mo7O24 as the active phase precursor, which could be linked to the higher content of active species Co3Mo3N for the CoMo-I/γ-Al2O3 catalyst.  相似文献   

6.
The study first investigated the modification effect of natural mixed rare earths (MRE) on cobalt catalysts for CH4/CO2 reforming to synthesis gas. The Co/γ-Al2O3 catalysts modified with the natural mixed rare earths were synthesized by the impregnation method, and characterized via ICP, BET, XRD, H2-TPR, TEM and TG–DSC techniques. The result showed that the addition of mixed rare earths enhanced the anti-sintering ability of metallic cobalt after reduction and improved anti-coke performance of the catalysts via the synergic effect of mixed rare earths. The 20% Co/γ-Al2O3 catalyst promoted by the appropriate natural mixed rare earths exhibited good activity and stability with low carbon formation at 800 °C for 320 h reaction.  相似文献   

7.
The mesoporous Co3O4 supported catalysts on Ce–M–O (M = Mn, Zr, Sn, Fe and Ti) composites were prepared by surfactant-assisted co-precipitation with subsequent incipient wetness impregnation (SACP–IWI) method. The catalysts were employed to eliminate trace CO from H2-rich gases through CO preferential oxidation (CO PROX) reaction. Effects of M type in Ce–M–O support, atomic ratio of Ce/(Ce + Mn), Co3O4 loading and the presence of H2O and CO2 in feed were investigated. Among the studied Ce–M–O composites, the Ce–Mn–O is a superior carrier to the others for supported Co3O4 catalysts in CO PROX reaction. Co3O4/Ce0.9Mn0.1O2 with 25 wt.% loading exhibits excellent catalytic properties and the 100% CO conversion can be achieved at 125–200 °C. Even with 10 vol.% H2O and 10 vol.% CO2 in feed, the complete CO transformation can still be maintained at a wide temperature range of 190–225 °C. Characterization techniques containing N2 adsorption/desorption, X-ray diffraction (XRD), H2 temperature-programmed reduction (H2-TPR) and scanning electron microscopy (SEM) were employed to reveal the relationship between the nature and catalytic performance of the developed catalysts. Results show that the specific surface area doesn’t obviously affect the catalytic performance of the supported cobalt catalysts, but the right M type in carrier with appropriate amount effectively improves the Co3O4 dispersibility and the redox behavior of the catalysts. The large reducible Co3+ amount and the high tolerance to reduction atmosphere resulted from the interfacial interaction between Co3O4 and Ce–Mn support may significantly contribute to the high catalytic performance for CO PROX reaction, even in the simulated syngas.  相似文献   

8.
Ni, Co and bimetallic Ni–Co catalysts supported on Ca-γ-Al2O3 and ZrO2 were investigated for the production of hydrogen via ethanol steam reforming (ESR). Catalysts were prepared by wet impregnation method and characterized using temperature-programmed reduction (TPR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). ESR and temperature-programmed desorption of ethanol (ethanol-TPD) were carried out in a continuous flow fixed bed micro-reactor and the outlet gases were monitored by an on-line GC or MS. Ni is found to be more active for the C–C bond rupture than Co on both supports, Ca-γ-Al2O3 and ZrO2. Catalyst support plays very important roles for the ESR. Strong interaction between support and metal affects the formation of NiCo bimetallic compound, resulting in the variety of catalytic activity. On Ca-γ-Al2O3 support, the catalytic activity of ESR follows the sequence of 10%Ni > 6.7%Ni 3.3%Co ∼ 3.3%Ni 6.7%Co > 10%Co. On ZrO2, the trend is 10%Ni > 6.7%Ni 3.3%Co > 10%Co > 3.3%Ni 6.7%Co. The H2O adsorption/activation ability of the support determines the reaction pathway and thus the product selectivity. On Ca-γ-Al2O3, water gas shift reaction is more favorable than on ZrO2, due to the availability of surface OH groups. The roles of the metal and support for ESR are also discussed.  相似文献   

9.
Co@Ru/γ-Al2O3 core–shell structure catalysts with Co/Ru different weight ratios are successfully prepared via surface displacement reaction. This novel route including reduction of Co core by NaBH4 on the surface of γ-Al2O3 and then substitution of Co species with Ru species, the resultant of reduction of RuCl3 precursor with N2H4. These catalysts are characterized with techniques X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), high resolution transmission electron microscopy (HRTEM), N2 adsorption/desorption (BET), temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS) and Fourier transform infra-red (FTIR) of CO adsorbed. The characterization results confirm a uniform dispersion of Co@Ru nanoparticles with core–shell structure over γ-Al2O3. The core–shell Co@Ru/γ-Al2O3 catalysts show the remarkable catalytic activity towards Fischer–Tropsch synthesis (FTS) in comparison with Co/γ-Al2O3, which is related to special core–shell structure. These catalysts exhibited excellent abilities in the cases of increasing formation of long-chain hydrocarbons and suppressing selectivity to lighter hydrocarbons.  相似文献   

10.
Highly dispersed Pt/γ-Al2O3 catalysts were prepared by deposition–precipitation (DP) method with precursor solutions of various pH. The pH was controlled from 6.5 to 9.5 with 5 wt% NaOH solution. As the pH of precursor solution increases over pH 7.5, the metal dispersion and surface PtOx species decrease and the Pt particle size increases. PrOx test was carried out with a space velocity of 60,000 mL/h gcat in temperature ranges from 100 to 200 °C. The [O2]/[CO] ratio was adjusted between 1 and 2 and the effect of H2O and CO2 was examined at [O2]/[CO] = 2. It is interesting that the CO conversion has good agreement with the Pt metal dispersion. In addition, highly dispersed Pt/γ-Al2O3 catalyst prepared by DP with pH 7.5 exhibited good catalytic activity below 150 °C in PrOx due to the improvement of the metal dispersion and reducibility of surface PtOx species at low temperatures compared with the catalyst prepared by impregnation method.  相似文献   

11.
Al-water reaction promoted by catalysts is a promising hydrogen generation technology. In this work, a high-activity M-B/γ-Al2O3 (M = Co, Ni) catalyst is prepared by wet chemical reduction method. It is found that M-B/γ-Al2O3 catalyst significantly promotes the Al-water reaction and decreases the induction time. When the molar ratio of γ-Al2O3 to Co-M in Co–B/γ-Al2O3 catalyst is 1:1, the induction time is only 0.43 h. The catalytic activity of M-B/γ-Al2O3 is proportional to its active area. SEM analyses show that M-B particles are dispersed on γ-Al2O3 surface, which reduces the agglomeration of M-B and increases the active surface of M-B/γ-Al2O3, leading to a high catalytic activity. A possible mechanism is proposed, which shows that the dissociation of water molecules on γ-Al2O3 surface and the microgalvanic interaction between M-B and Al can promote the hydration process of passive oxide film on Al particle surface, speeding up the Al-water reaction.  相似文献   

12.
Steam reforming of acetic acid on Ni/γ-Al2O3 with different nickel loading for hydrogen production was investigated in a tubular reactor at 600 °C, 1 atm, H2O/HAc = 4, and WHSV = 5.01 g-acetic acid/g-cata.h?1. The catalysts were characterized by temperature programmed oxidation (TPO) and differential thermal analysis (DTA), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The results showed that the amount of deposited carbidic-like carbon decreased and graphitic-like carbon increased with Ni loading increasing from 9 to 15 wt%. The Ni/γ-Al2O3 catalyst with 12 wt% Ni loading had higher catalytic activity and lower coke deposited rate.  相似文献   

13.
Ni/xY2O3–Al2O3 (x = 5, 10, 15, 20 wt%) catalysts were prepared by sequential impregnation synthesis. The catalytic performance for the autothermal reforming of methane was evaluated and compared with Ni/γ-Al2O3 catalyst. The physicochemical properties of catalysts were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-Ray Photoelectron Spectrometer (XPS), Thermo Gravimetric Analyzer (TGA) and H2-temperature programmed reduction techniques (TPR). The decrease of nickel particle size and the change of reducibility were found with Y modification. The CH4 conversion increased with elevating levels of Y2O3 from 5% to 10%, then decreased with Y content from 10% to 20%. Ni/xY2O3–Al2O3 catalysts maintained high activity after 24 h on stream, while Ni/Al2O3 had a significant deactivation. The characterization of spent catalysts indicated that the addition of Y retarded Ni sintering and decreased the amount of coke.  相似文献   

14.
Addition of low quantities of ytterbium to sol–gel prepared Ni/γ-Al2O3 catalysts has been shown to lead to significant increases in catalytic activity and long term stability in the catalytic conversion of CO2 and CH4 into syngas (H2 and CO). The role of ytterbium in these catalysts was investigated in this study through detailed investigations on the structure and composition of ytterbium promoted Ni/γ-Al2O3 catalysts using the following techniques: synchrotron X-ray diffraction, X-ray Photoemission Spectroscopy, Transmission Electron Microscopy, Scanning Electron Microscopy/Energy Dispersive X-ray analysis, Temperature Programmed Reduction techniques and N2 adsorption–desorption isotherms. The results obtained indicated that ytterbium, at small quantities (up to 2 wt%), interacted strongly with the support which in turn altered the interaction between nickel and the support (most notably it was found to completely inhibit the formation of NiAl2O4). This decreased interaction between Ni and the support also led to a higher quantity of Ni being present in the catalyst in the form of Ni.  相似文献   

15.
Ni/Y2O3, with Y2O3 support prepared by the conventional precipitation method, was prepared by an impregnation method. The physicochemical properties of Y2O3 and Ni/Y2O3 were characterized by BET, CO2-TPD, NH3-TPD, TPR, XRF and TGA, and compared with those of γ-Al2O3 and Ni/γ-Al2O3, respectively. The catalytic performance of Ni/Y2O3 in the reaction of partial oxidation of methane (POM) to syngas was evaluated and compared with that of Ni/γ-Al2O3 catalyst, too. The results showed that, Y2O3 was a basic support with few acidic sites while γ-Al2O3 was an acidic support. NiO particles supported on Y2O3 were more easily to be reduced than those supported on γ-Al2O3. In the partial oxidation of methane, Ni/Y2O3 catalyst showed high catalytic activity and exhibited better catalytic stability than Ni/γ-Al2O3. After POM reaction at 700 °C for 550 h, methane conversion decreased little and only 2.2 wt% carbon was deposited on Ni/Y2O3 catalyst. Ni/Y2O3 was stable in POM even after a series of reaction temperature variations within the temperature range of 400 ∼ 800 °C.  相似文献   

16.
The effects of Y2O3-modification to Ni/γ-Al2O3 catalysts on autothermal reforming of methane to syngas were investigated. It was found that the introduction of Y2O3 (5%, 8%, 10%) lead to significant improvement in catalytic activity and stability, and the H2/CO ratio could be adjusted via controlling the O2/CO2 ratio of the feed gas. According to the characterization results of catalysts before and after reaction, it was found that the Y2O3·γ-Al2O3 supported Ni catalysts had higher NiO reducibility, smaller Ni particle size, higher Ni dispersion and stronger basicity than those of the Ni/γ-Al2O3 catalysts. The analysis of catalysts after reaction showed that the addition of Y2O3 inhibited the Ni sintering, changed the type of coke and decreased the amount of coke on the catalysts. All the experimental results indicated that the introduction of Y2O3 to Ni/γ-Al2O3 resulted in excellent catalytic performances in autothermal reforming of methane, and Y2O3 played important roles in preventing metal sintering and coke deposition via controlling NiO reducibility, Ni particle size and dispersion, and basicity of catalysts.  相似文献   

17.
Ni/xPr-Al2O3 (x = 5, 10, 15, 20 wt%) catalysts with an application in autothermal reforming of methane were prepared by sequential impregnation synthesis; its catalytic performance was evaluated and compared with that of Ni/γ-Al2O3 catalyst; the physicochemical properties of the catalysts were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-Ray Photoelectron Spectrometer (XPS), Thermo Gravimetric Analyzer (TGA) and H2-temperature programmed reduction techniques (TPR). The results showed that Pr addition promoted the reduction of nickel particle size on the surface. TPR experiments suggested a heterogeneous distribution of nickel oxide particles over xPr-Al2O3 supports and the promotion of NiO reduction by Pr modification. The CH4 conversion increased with elevating levels of Pr addition from 5% to 10%, then decreased with Pr content from 10% to 20%. For the stability catalytic tests, Ni/xPr-Al2O3 catalysts maintained the high activity after 48 h while Ni/Al2O3 had a significant deactivation.  相似文献   

18.
Nickel supported γ-alumina (Ni/γ-Al2O3) catalysts are well-known to be highly active on the autothermal reforming of methane, but to be unstable due to coke deposition. Cerium oxide (CeO2) is one of promising promoter to overcome the fast deactivation of nickel-based catalysts by coke formation. Herein, catalytic behavior of CeO2 over Ni/γ-Al2O3 catalysts on the autothermal reforming of methane was investigated. The catalytic activity was maintained for 100 h with H2/CO molar ratio of 1.9. The formation of CeAlO3 is observed at the reduction and reaction conditions. In this work, it was found that the formation of CeAlO3 promoted the catalytic oxidation toward CO2 and prevented the formation of α-Al2O3 and nickel-aluminate, resulting in stable activity for autothermal reforming of methane.  相似文献   

19.
Τhe feasibility of tailoring the iso-octane steam reforming activity of Cu/CeO2 catalysts through the use of Co as a second active metal (Cu20−xCox, where x = 0, 5, 10, 15, 20 wt%), is investigated. Characterization studies, involving N2 adsorption–desorption at −196 °C (BET), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS) and Temperature Programmed Reduction (H2-TPR), were carried out to reveal the impact of the morphological, structural and surface properties of the catalysts on the reforming performance. The results showed that reforming activity was monotonically increased upon increasing cobalt loading. The Co/CeO2 catalyst demonstrated the optimum performance with a H2 yield of 70–80% in the 600–800 °C temperature interval. The Co/CeO2 catalyst exhibited also excellent stability at temperatures above 700 °C, while Cu-based catalysts rapidly deactivated in long term stability tests. A close correlation between surface/redox properties and steam reforming efficiency was established. The lower reducibility of Co/CeO2 catalysts, associated with the formation of Co3+ species, in Co3O4-like phase, can be accounted for the enhanced carbon tolerance of Co-based catalysts. Furthermore, the high concentration of surface oxygen species on Co/CeO2 catalysts can be considered for their enhanced performance. On the other hand, the Cu-induced easier reducibility of bimetallic catalysts, in conjunction with carbon deposition and active phase sintering can be accounted for their inferior steam reforming performance. Irreversible changes in the redox properties of Cu-based catalysts, taking place under reaction conditions, could be resulted to ceria deactivation thus hindering the redox process to keep on.  相似文献   

20.
Activity and stability of the supported Ni-based catalysts for the gasification performances of phenol solution and coal-gasification wastewater in supercritical water were studied in a continuous reactor at 480 °C, 25 MPa and oxygen ratio of 0.2 for 50 h operation. The influences of the supports (γ-Al2O3, active carbon (AC) and carbon nanotube (CNT)) on gas yields, gasification efficiencies for phenol solution were investigated, and the loading amount of Ni were optimized. Results showed that the catalytic activity and the stability of the catalysts followed the order of Ni/CNT > Ni/AC > Ni/γ-Al2O3. The activity of Ni/AC and Ni/γ-Al2O3 decreased after 30 h continuous operation, and there occurred significant leaching of Ni2+. For Ni/CNT catalyst, H2 yield increased obviously when the loading amount of Ni lower than 15 wt%, while increased little at higher loading amount. Then, 15 wt% Ni/CNT with a thickness of 1.5 mm was coated on 316 L stainless steel (SS316L, an economic material usually used as the reactor material), which can act as a "catalytic tube wall" in reactor. The catalytic activity and corrosion resistance of Ni/CNT/SS316L for the gasification of real coal-gasification wastewater were studied. Results showed that Ni/CNT/SS316L gave a great positive effect on H2 production. H2 yield increased from 25.36 mmol/g (total organic carbon) without catalyst to 75.12 mmol/g (total organic carbon) with Ni/CNT/SS316L after operated for 20 h, respectively. However, obvious pealing of the coating was found after 50 h operation. Further study is necessary for the improvement of the coating preparation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号