首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The corrosion resistance of an epoxy coating reinforced with different ratios of MIO/Al pigments was studied. The coatings properties were investigated by an electrochemical impedance spectroscopy (EIS), salt spray test, cathodic disbonding and a scanning electron microscope (SEM). The corrosion resistance of the epoxy coating was improved using MIO (micaceous iron oxide) and Al pigments. The corrosion resistance of the purely Al pigmented coating was considerably greater than the purely MIO pigmented coating. The cathodic disbonded area of coating was decreased using MIO and Al pigments. The decrease in disbonded area was more pronounced in the presence of Al particles.  相似文献   

2.
The corrosion behaviour of magnetron sputtered α- and β-Ta coated AISI 4340 steels was studied with potentiodynamic polarization and electrochemical impedance spectroscopy. The coating porosity was observed to decrease with increasing coating thickness. For coatings less than 10 μm thick (α- or β-Ta), porosity was significant and open pores resulted in severe localized corrosion of the steel substrate, coating delamination, and overall coating failure. Additionally, the β-Ta coatings were more susceptible than the α-phase to delamination. As for the 50 and 100 μm thick α-Ta coatings, the electrochemical impedance behaviour was comparable to that of Ta foil, demonstrating the coating viability and corrosion resistance.  相似文献   

3.
Ni/Zn compositionally modulated multilayer (CMM) coatings were deposited using dual bath technique. Coatings corrosion performance was evaluated using electrochemical impedance spectroscopy (EIS) during extended immersion times up to 48 h. The results of electrochemical impedance spectroscopy showed that Ni/Zn CMM coatings had better corrosion resistance compared to that of the zinc single layer coating. The modified corrosion product which is formed on the Ni/Zn CMM coatings during extended exposure times and also a good barrier effect of the nickel layer against aggressive species in these coatings can be two important reasons for high corrosion performance and so protection performance of the Ni/Zn CMM coatings.  相似文献   

4.
In this work, corrosion of industrial galvanised coatings is monitored through potentiodynamic and electrochemical impedance spectroscopy (EIS) methods and supported by real-time immersion tests. For such purpose, the corrosion behaviour is studied in different media (NaCl, NaOH and rain water), at different concentrations and varying immersion times. The results show that EIS allows to establish the interfacial reactions and the dissolution mechanisms occurring in three corrosive media, hence to foresee the protection conferred by these coatings. The impedance diagrams of the coated steel do not provide information on the slowest reactions, which only occur in natural rain water. Finally, each Zn/medium interface is characterised by a specific equivalent circuit giving a similar impedance response.  相似文献   

5.
Amorphous/nanocrystalline Ni-Ti powders produced by low energy mechanical alloying were used as feedstock to deposit NiTi intermetallic coatings on 316L stainless steel substrate using high velocity oxy-fuel (HVOF) and air plasma spraying (APS) processes. Electrochemical impedance spectroscopy (EIS) and polarization tests indicated that the corrosion performance and passive behaviour of HVOF coating were far better than those of APS coating. The study also showed that the solution had penetrated through the coating microcracks and caused interior corrosion of APS coating, while the HVOF coating was immune from interior corrosion attack and consequently exhibited a good passive behaviour during long-term immersion.  相似文献   

6.
Montmorillonite organoclay (OMMT) and nanoglass flake (GF) were incorporated into epoxy resin by mechanical agitation and sonication process. Optical microscopy was used to analyse the optical homogeneity of dispersions. To investigate anticorrosive properties of nanocomposite organic coatings, salt fog test, electrochemical impedance spectroscopy (EIS), polarization measurement, pull-off adhesion and water absorption tests have been employed. The time course of impedance parameters and polarization studies show that coating corrosion resistance is improved as the amounts of OMMT and GF are increased to 3 wt%. The results indicated that nano-GF filled specimens display better corrosion performance than the OMMT filled ones.  相似文献   

7.
The effect of different type of iron-phosphate coatings on corrosion stability and adhesion characteristic of top powder polyester coating on steel was investigated. Iron-phosphate coatings were deposited on steel in the novel phosphating bath with or without NaNO2 as an accelerator. The corrosion stability of the powder polyester coating was evaluated by electrochemical impedance spectroscopy (EIS), adhesion by pull-off and NMP test, while surface morphology of phosphate coatings were investigated by atomic force microscopy (AFM).The adhesion and corrosion stability of powder polyester coatings were improved with pretreatment based on iron-phosphate coating deposited from NaNO2-free bath.  相似文献   

8.
The technique of post-sealing the phosphated hot-dip galvanized (HDG) steel with molybdate solution was addressed. The composition and corrosion resistance of the improved phosphate coatings were investigated by SEM, EDS, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements, and neutral salt spray (NSS) test. The results showed that molybdate films were formed in the pores of phosphate coatings, and the compact and complete composite coatings composed of phosphate coatings and molybdate films were formed on the zinc surface, resulting in that both the anodic and cathodic processes of zinc corrosion were inhibited remarkably; the corrosion protection efficiency values were increased; and the electrochemical impedance values were enhanced at least one order of magnitude. The low frequency impedance values for the composite coatings were increased at the initial stages of immersion in 5% sodium chloride solution, indicating the self-repairing activity of the composite coatings.  相似文献   

9.
Y. Hamlaoui  L. Tifouti  F. Pedraza   《Corrosion Science》2009,51(10):2455-2462
In this work, a Cr-free conversion layer based on molybdate–phosphate–silicate (MPS) was synthesised on a galvanized steel by simple immersion and its corrosion behaviour was compared to that of a typical chromate layer. Stationary electrochemical techniques and electrochemical impedance spectroscopy (EIS) were employed to highlight the corrosion mechanisms of both coatings in different NaCl concentrations, immersion times and pH. Contrary to the chromate layer, the MPS coating showed good electrochemical stability even in concentrated NaCl solutions and remarkable electrochemical efficiency. With increasing time, two corrosion stages were associated with the two likely sublayers of the MPS coating. Furthermore, the MPS coating behaved better than the chromate layer in acidic and alkaline pH, especially the latter as a compact corrosion product layer formed. Finally, each coating/electrolyte interface was characterised by an electrical equivalent circuit giving a satisfactory correlation between the experimental and the calculated impedance. It derived that the MPS could be an environmentally friendly alternative to chromating.  相似文献   

10.
Zirconia coatings were prepared by heat-treating the electrodeposited zirconium hydroxide produced by pulse current on 316L stainless steel. The results showed that a coating with amorphous structure obtained after heat treating at 200 °C, reveals no corrosion barrier performance. Heat treating at 400 °C resulted in zirconia coating with nanocrystalline/amorphous structure, which reveals a strong corrosion barrier performance. This coating shows a high value of pore resistance and Warburg behaviour in electrochemical impedance spectroscopy. As the temperature was raised to 600 °C, an entirely nanocrystalline structure was found. However, this coating revealed muddy shape cracks, with inferior corrosion barrier performance.  相似文献   

11.
Degradation of heavy-duty steel coatings when exposed to ultraviolet (UV) radiation was investigated by electrochemical impedance spectroscopy (EIS) and additional techniques in order to clarify the feasibility of evaluation of the UV degradation by EIS. Two coatings were considered: polyester-urethane topcoat plus epoxy primer (PU/E) and epoxy topcoat plus epoxy primer (E/E). Each was applied to a steel substrate and exposed to cyclic wetting-drying under UV radiation. The PU/E coating developed topcoat cracks but did not delaminate from the substrate; capacitive behaviour was evident, and corrosion of the underlying steel was not observed. The E/E coating showed topcoat chalking and partial disappearance, exposing the primer, but corrosion of the underlying steel was not observed. The morphology and chemical changes were compared with the results of EIS.  相似文献   

12.
In the present study, the potential of poly(ether imide) as corrosion protective coating for magnesium alloys was evaluated using the spin coating technique. The influence of different parameters on the coating properties was evaluated and the corrosion behaviour of the coatings was investigated using electrochemical impedance spectroscopy. The best corrosion protection was obtained preparing the coatings under N2 atmosphere, using 15 wt.% solution in N′N′-dimethylacetamide (DMAc) which resulted in a coating of approximately 2 μm thickness, with an initial impedance of 109 Ω cm2 and of 105 Ω cm2 after 240 h of exposure to a 3.5% NaCl solution.  相似文献   

13.
The effects of a deposition current density (c.d.) on the corrosion behaviour of Zn–Mn alloy coatings, deposited from alkaline pyrophosphate solution, were investigated by atomic absorption spectrophotometry (AAS), X-ray diffraction (XRD), atomic force microscopy (AFM), optical microscopy, electrochemical impedance spectroscopy (EIS) and measurement of corrosion potential (Ecorr). XRD analysis disclosed that zinc hydroxide chloride was the main corrosion product on Zn–Mn coatings immersed in 0.5 mol dm−3 NaCl solution. EIS investigations revealed that less porous protective layer was produced on the alloy coating deposited at c.d. of 30 mA cm−2 as compared to that deposited at 80 mA cm−2.  相似文献   

14.
Cerium molybdate containers loaded with 2-mercaptobenzothiazole were incorporated into epoxy coatings onto aluminium alloys 2024-T3 and investigated with respect to the corrosion protection of the metallic surfaces. The coatings were deposited via the dip-coating process. The morphology of the coatings was examined by Scanning Electron Microscopy. Their composition and structure were investigated by Fourier Transform Infrared Spectroscopy and Energy Dispersive X-ray Analysis. The corrosion resistance of these coatings was investigated by using electrochemical impedance spectroscopy and open circuit potential. After exposure to 0.05 M NaCl solution for 28 days, the coatings with the loaded containers exhibit improved corrosion performance.  相似文献   

15.
Novel LDH-based nanocontainers of corrosion inhibitor are developed in the present work. The reservoirs are composed by nanostructured layered double Mg/Al and Zn/Al hydroxides with divanadate anions located in the interlayer regions. The nanocrystalline LDHs (layered double hydroxides) are able to release vanadate ions in a controllable way.XRD, EDS and SEM methods were used in this work to study morphological and structural properties of the synthesized LDH powders. Corrosion protection effect of the LDH powders directly added to corrosive electrolyte or to commercial coatings used for aeronautical application has been studied by electrochemical impedance spectroscopy and standard accelerated corrosion tests. Aluminium alloy 2024 was used here as substrate.The results demonstrate that both of the LDH pigments being added to corrosive media confer corrosion inhibition effect, especially Zn/Al based nanocontainers obtained by the anion-exchange approach. The coatings doped with Zn/Al LDH-nanocontainers provide well-defined self-healing effect and confer corrosion protection properties superior than currently used environmentally unfriendly chromate-based systems.  相似文献   

16.
Electrodeposition of galvanized coatings from electrolyte containing 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) can increase microbial corrosion resistance. Coatings were found to inhibit the growth and metabolism of sulphate-reducing bacteria (SRB). Open circuit potentials and corrosion rates of coupons revealed DCOIT effectively influences the coating property. Energy diffraction spectrum and infrared absorption spectra were used to detect DCOIT on the coating surface. Scanning electron microscopy and X-ray diffraction revealed morphological and structural modifications. Electrochemical impedance spectroscopy and polarization techniques determined the corrosion behaviour of coatings in SRB. Results showed coatings formed from electrolytes with DCOIT have improved microbial corrosion resistance and bactericidal action.  相似文献   

17.
The electrochemical behaviour of the Ti–13Nb–13Zr and Ti–6Al–4V ELI alloys with martensitic microstructures was investigated by polarization and electrochemical impedance spectroscopy (EIS) in Ringer’s solution. The impedance spectra were interpreted by a two time-constants equivalent circuit. Both investigated alloys showed high corrosion resistance, but the thin and uniform passive film on the Ti–6Al–4V ELI alloy surface was more protective. The inner barrier and outer porous layer were highly resistant and capacitive. However, thicker and more porous passive film on the Ti–13Nb–13Zr alloy surface may be beneficial for osteointegration. The suitable thermomechanical processing improved the corrosion resistance of Ti–13Nb–13Zr alloy.  相似文献   

18.
Effect of grain size reduction on the electrochemical corrosion behaviour of nanocrystalline Fe was investigated using Tafel polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Nanocrystalline iron was fabricated by pulse electrodeposition using citric acid bath. The grain size of a nanocrystalline surface was analyzed by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The corrosion resistance of Fe in alkaline solution considerably increased as the grain size decreased from microcrystalline to nanocrystalline. The behaviour of passive film growth and corrosion was discussed in terms of excess of free energy caused by nanocrystalline surface.  相似文献   

19.
Thermally sprayed Al and Al/SiCp composite coatings have been deposited on ZE41 magnesium alloy and mechanical compaction at room temperature was applied to the Al and Al/SiCp coatings to reduce their porosity. Corrosion behaviour of coated samples was evaluated and compared to that of uncoated substrate in 3.5 wt.% NaCl solution using electrochemical measurements. Al and Al/SiCp composite coatings reduced the corrosion current density of Mg-Zn alloys by three and two orders of magnitude, respectively, and reductions up to four orders of magnitude were obtained after mechanical compaction.  相似文献   

20.
The electrochemical corrosion behaviours of the steel substrates coated with three different plasma sprayed Al2O3–13%TiO2 coatings were studied in this paper. The three kinds of Al2O3–13%TiO2 coatings were conventional ME coating, nanostructured NP coating and NS coating. There were micro cracks, laminar splats and straight columnar grains in ME coating. For the two nanostructured coatings, the laminar microstructure and columnar grains were not obvious. The NP coating had the highest hardness and spallation resistance. Electrochemical corrosion behaviour of the three coatings was mainly investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in aqueous Na2SO4 solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号