首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Ultrafine-grained (UFG) copper was prepared by facile machining procedure. High resolution transmission electron microscopy images revealed that, in UFG Cu, minimum grain size of 80 nm could be formed when a small machining rake angle was applied. The electrochemical corrosion behavior of UFG Cu in 0.5 M HCl was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy. Comparing with coarse-grained Cu, UFG Cu exhibited notably declined corrosion current density. Particularly, when the size of Cu grains were reduced from 500 μm to 80 nm, the charge transfer resistance of anodic dissolution step dramatically increased from 200 to 621 Ω cm2.  相似文献   

2.
A bulk ultrafine-grained (UFG) mild steel with a ferrite grain size of approximately 200 nm and a dispersed distribution of iron carbide particles was fabricated by equal-channel angular pressing (ECAP) at 400 °C. The corrosion behaviour of the ECAP-processed mild steel and pure iron was investigated in a 0.5 mol/L H2SO4 solution. They exhibited a higher corrosion rate and better anodic passivity properties due to the presence of more crystalline defects. As a result of the refinement of the iron carbide particles, the forming ability of a continuous dense passive film was improved.  相似文献   

3.
The corrosion inhibition effect of new azomethine compounds: PhNNC (COCH3)NC6H4Y {Y = OCH3 (SB1), CH3 (SB2), H (SB3), Br (SB4) and Y = Cl (SB5)} on mild steel in 1 M HCl, was investigated using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and quantum chemistry analysis. It has been found that the inhibition efficiency increased with increasing inhibitor concentration. The polarization curves showed that these Schiff bases function as mixed inhibitors. The adsorption of studied compounds on mild steel surface was found to follow the Langmuir isotherm. Molecular modeling was used to correlate corrosion inhibition properties and calculated quantum chemical parameters.  相似文献   

4.
p-(9-(2-Methylisoxazolidin-5-yl)nonyloxy)benzaldehyde I, prepared using a cycloaddition protocol, was elaborated into its cinnamaldehyde derivative II which upon quarternization with propargyl chloride afforded III bearing an interesting blend of structural traits suitable for imparting inhibition of mild steel corrosion. Novel compounds I–III showed efficient inhibition against mild steel corrosion in CO2–0.5 M NaCl (40 °C, 1 atm; 120 °C, 10 bar), 1, 4, 7.7 M HCl, and 0.5 M H2SO4 at 60 °C as determined by gravimetry and electrochemical methods. The presence of carbonaceous surface and nitrogen, as revealed by XPS study, indicated the formation of a film covering the metal surface, which imparted corrosion inhibition.  相似文献   

5.
The isothermal corrosion behavior between 1000 °C and 1190 °C of Inconel 690 and 693 in an iron phosphate glass melt containing 26 wt.% of a simulated Hanford low activity nuclear waste (LAW) was investigated. At least three distinct corrosion processes were recognized for both alloys over different temperature ranges. Inconel 690 and 693 both display the best corrosion resistance at an intermediate temperature range (Inconel 690: 1050–1100 °C; Inconel 693: 1050–1165 °C), and more severe corrosion at both lower and higher temperatures. In general, Inconel 693 is less reactive over a wider temperature range than Inconel 690.  相似文献   

6.
Three novel benzimidazole derivatives, 2-aminomethyl benzimidazole (ABI), bis (2-benzimidazolylmethyl) amine (BBIA) and tri (2-benzimidazolylmethyl) amine (TBIA), have been studied as inhibitors for mild steel in 1.0 M HCl. The three compounds prevent mild steel from corrosion by adsorption on the steel surface and forming insoluble complex with ferrous species. Inhibition efficiency increases with the increase in the number of benzimidazole segments in the molecules (TBIA > BBIA > ABI). Protection efficiency of the inhibitors depends on concentration of inhibitor, temperature and concentration of hydrochloric acid.  相似文献   

7.
Corrosion resistance of a highly alloyed austenitic stainless steel (Sanicro28) in 50 wt.% H3PO4 industrial medium containing impurities at temperatures from 20 °C to 80 °C was evaluated after different immersion times. Electrochemical measurements (polarization curves, OCP, EIS and Mott–Schottky) demonstrated that Sanicro28 passivates spontaneously. From impedance results, film thicknesses of about 1.6–4.5 nm were obtained. At low temperature, the resistance to corrosion increases with immersion time due to the formation of iron phosphate and/or chromium phosphate. At higher temperature, phosphate formed a porous polyphosphate film identified by μ-Raman. No pits are initiated on surface whatever the temperature.  相似文献   

8.
The corrosion and hydrogen absorption of commercially pure zirconium have been investigated in acidulated phosphate fluoride (APF) solutions. Upon immersion in 2.0% APF solution of pH 5.0 at 25 °C, a granular corrosion product (Na3ZrF7) deposits over the entire side surface of the specimen, thereby inhibiting further corrosion. In 0.2% APF solution, marked corrosion is observed from the early stage of immersion; no deposition of the corrosion product is observed by scanning electron microscopy. A substantial amount of hydrogen absorption is confirmed in both APF solutions by hydrogen thermal desorption analysis. The amount of absorbed hydrogen of the specimen immersed in the 2.0% APF solution is smaller than that in the 0.2% APF solution in the early stage of immersion. The hydrogen absorption behavior is not always consistent with the corrosion behavior. Hydrogen thermal desorption occurs in the temperature range of 300–700 °C for the specimen without the corrosion product. Under the same immersion conditions, the amount of absorbed hydrogen in commercially pure zirconium is smaller than that in commercially pure titanium as reported previously. The present results suggest that commercially pure zirconium, compared with commercially pure titanium, is highly resistant to hydrogen absorption, although corrosion occurs in fluoride solutions.  相似文献   

9.
In this study, the electrochemical corrosion properties of electrodeposited Cu foils in a CuCl2-containing acidic etching solution were investigated. The main passive product was CuCl and a trace amount of Cu2O can also be detected. The (2 2 0)-oriented Cu foils exhibited higher corrosion potential and lower corrosion current density than those with (1 1 1) or (2 0 0) texture, suggesting a superior corrosion resistance against the etching solution. It is proposed that the preferred orientation and thus the differences in atomic stacking density on specific planes dominated the corrosion properties of the electrodeposited Cu foils instead of grain size or surface roughness.  相似文献   

10.
Directionally solidified Si–TaSi2 eutectic composite is selectively etched to fabricate well aligned TaSi2 tip array for field emission application. The effect of etching parameters on TaSi2 tip structure, and its corrosion behaviour in HNO3/HF solution are investigated. At the optimised condition (HNO3/HF = 5 for 50 min), sharp TaSi2 tips with curvature radius of 18 nm and homogenous distribution are obtained, which greatly improves the figure of merit associated with field emission current. The TaSi2 fibre presents smaller dissolution rate in the HNO3/HF solution than Si matrix. The formation mechanism of etching pit on the Si matrix surface is also discussed.  相似文献   

11.
The failure mechanisms of an epoxy varnish coating and an epoxy glass flake coating were investigated under ordinary pressure (1 atm) and high hydrostatic pressure (35 atm), from electrochemical behavior, water absorption, wet adhesion and mechanical characteristics. The results revealed that mechanical properties were more favorable under 35 atm, but pressure changed the electrochemical behavior and deteriorated coating protectiveness by accelerating water absorption, increasing diffusion coefficient and changing diffusion type. More importantly, loss of wet adhesion, induced by blisters and corrosion products on interface, became the main reason for coating failure and thus the key factor controlling coating lifetime.  相似文献   

12.
Corrosion was evaluated for ultra-high-purity magnesium (Mg) immersed in 3.5% NaCl solution saturated with Mg(OH)2. The intrinsic corrosion rate measured with weight loss, PW = 0.25 ± 0.07 mm y−1, was slightly smaller than that for high-purity Mg. Some specimens had somewhat higher corrosion rates attributed to localised corrosion. The average corrosion rate measured from hydrogen evolution, PAH, was lower than that measured with weight loss, PW, attributed to dissolution of some hydrogen in the Mg specimen. The amount of dissolution under electrochemical control was a small amount of the total dissolution. A new hydride dissolution mechanism is suggested.  相似文献   

13.
The inhibition effect of two urea derivatives of hydroxymethyl urea (HMU) and 1,3-bis(hydroxymethyl) urea (BHMU) on the corrosion of cold rolled steel (CRS) in 1.0 M HCl solution was studied by weight loss, potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS), quantum chemical calculation and molecular dynamics (MD) simulation methods. Inhibition efficiency values of 20.0 mM HMU and BHMU are higher than 80% and 85% at 20–50 °C, respectively. The adsorption of each inhibitor on steel surface obeys Langmuir adsorption isotherm, and is mainly the chemical adsorption. Inhibition efficiency follows the order: BHMU > HMU.  相似文献   

14.
The interfacial reaction between Co–Cr–Mo alloy and liquid Al was investigated using immersion tests. Microstructure characterization indicated that the Co–Cr–Mo alloy was corroded by liquid Al homogeneously, with the formation of a (Co,Cr,Mo)2Al9 layer close to alloy matrix and “(Cr,Mo)7Al45 + Al” layer close to Al. Kinetics analysis showed that the corrosion of the Co–Cr–Mo alloy followed a linear relationship with the immersion duration. Compared with pure Co–liquid Al reaction system, the alloying of Cr and Mo changed the solid–liquid interface structure, but the corrosion of the solid metal was still dominated by the dissolution of an intermetallic layer.  相似文献   

15.
The inhibition effect of polyaspartic acid (PASP) and its synergistic effect with KI on mild steel corrosion in 0.5 M H2SO4 solution are studied by weight loss and electrochemical methods. The inhibition efficiency increases with the concentration of PASP and increases further with the presence of 1 mM KI. Result of the zero charge potential measurement shows that iodide ion promotes the film formation of PASP greatly. The mild steel surfaces after immersion test were analyzed using scanning electron microscopy and X-ray photoelectron spectroscopy. An adsorption model is proposed to elucidate the synergistic mechanism of synergistic effect.  相似文献   

16.
Weathering steel corrosion was monitored for one to two years under natural atmosphere by an electrochemical impedance technique. Two identical comb-shape weathering steel sheets embedded in epoxy resin were used as monitoring probe electrodes at two different bridges in Japan. Impedances at 10 kHz (Z10kHz) and 10 mHz (Z10mHz) were automatically measured every hour. Coupons (50 × 50 × 2 mm3) prepared from the same steel sheets were exposed together to measure the corrosion mass loss. The average (Z10mHz)−1 value for half to one year exposure correlated well with the average corrosion rate determined from the corrosion mass loss.  相似文献   

17.
The effect of corrosive environment on corrosion fatigue crack growth (CFCG) behavior of oil-grade nickel-base alloy 718 is studied. The results demonstrate that there is no obvious effect of 3.5 wt.% NaCl solution at RT, 50 °C and 80 °C on CGCG rates while 21 wt.% NaCl solution at 80 °C produces a deleterious effect on CFCG rates compared to the ones tested in air. Potentiodynamic polarization results show that alloy 718 exhibits passive behavior in 3.5 wt.% NaCl solution, while pitting corrosion resistance decreases with increasing solution temperature. Nevertheless, alloy 718 shows active corrosion behavior in 21 wt.% NaCl solution at 80 °C.  相似文献   

18.
Y–Co-modified aluminide coatings on nickel base superalloys were prepared by pack cementation method. Effect of Y2O3 content in the pack mixture on microstructure and hot corrosion resistance of the coatings was investigated. The results show that with the increase in Y2O3 content, the content of Co in the coatings increases. The mass gain of the coatings with Y2O3 addition of 1, 2 and 3 wt.% is 0.6, 0.55 and 0.42 mg/cm2 after hot corrosion at 1173 K for 100 h, respectively. Y2O3 addition accelerates the diffusion of Co and thus increases the hot corrosion resistance of the coating.  相似文献   

19.
The effect of 2-amino-4-methylpyridine (AMP) on the corrosion behavior of mild steel (MS) in 0.5 M HCl is investigated with electrochemical methods and theoretical calculations. The electrochemical tests show that the polarization resistance of MS increasing the presence of AMP in acid solution. Adsorption of AMP on MS surface is a physical and obeys the Langmuir isotherm. The quantum parameters signaled adsorption occurs on amine and methyl substituents of AMP. The inhibition efficiency is related to frontier orbital’s energy band gap of AMP, which are 5.357 and 6.490 eV for neutral and protonated molecules in aqueous solution, respectively.  相似文献   

20.
Microstructure and corrosion behaviour of a binary Al–29 at%Co alloy have been studied. The alloy was prepared by arc-melting of Al and Co in high purity Ar and rapidly solidified on a water-cooled Cu mould. The alloy chemical composition and microstructure were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. Furthermore, the corrosion behaviour was studied by potentiodynamic polarization in aqueous NaCl (0.6 mol dm−3) at room temperature. The alloy was found to consist of three phases: hexagonal Al5Co2, Z-phase and AlCo (β). The corrosion resistance of different intermetallic phases is characterized. The results are compared to previously published results of Al–TM (TM = transition metal) alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号