首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The properties of calcium zincate as negative electrode materials for secondary batteries were examined by powder microelectrode, cyclic voltammetry, charge–discharge cycle measurements and X-ray diffraction (XRD) analysis. The results show that the cycleability of calcium zincate is obviously superior to that of ZnO and that of the mixture of ZnO and Ca(OH)2 (the molar ratio of Zn:Ca=2:1). Calcium zincate forms zinc metal during the charging and exhibits an initial discharge capacity 230 mAh g−1. With the discharge cut-off voltage of 1.0 V, the discharge capacity of the experimental Zn/NiOOH cell does not decay much during 500 cycles, exhibiting good prospect for practical use.  相似文献   

2.
《Journal of power sources》2006,153(1):170-173
Needle coke, the remaining material after refining petroleum, is used as an anode of a lithium-ion secondary battery. Sulfur is separated from the needle coke to below 0.1 wt.% using the molten caustic leaching (MCL) method developed at the Korea Institute of Energy Research. The needle coke with high-purity is carbonized at various temperatures, namely 0, 500, 700 and 900 °C. The coke treated at 700 °C gives a first and second discharge capacity of more than 560 and 460 mAh g−1, respectively, between 0 and 2.0 V. By contrast, the first and second discharge capacity of untreated coke is over 420 and 340 mAh g−1, respectively, between 0.05 and 2.0 V.The first discharge capacity of 560 mAh g−1 is beyond the theoretical maximum capacity of 372 mAh g−1 for LiC6. Though the cycle efficiency is not consistent, the needle coke heat-treated at 700 °C persistently maintains an efficiency of over 90% until the 50th cycle, except on the first cycle. This study demonstrates that the needle coke with high-purity could be a good candidate for an anode material in fabricating high-capacity lithium-ion secondary batteries.  相似文献   

3.
《Journal of power sources》2005,141(2):293-297
Gel polymer electrolytes consisting of 25 wt.% P(VdF-co-HFP), 65 wt.% ethylene carbonate + propylene carbonate and 10 wt.% LiN(CF3SO2)2 are prepared using by a solvent-casting technique. The electrodes are for use in lithium-ion polymer batteries. The electrochemical characteristics of the gel polymer electrolytes are evaluated by means of ac impedance and cyclic voltammetry. The charge–discharge performance of lithium polymer and lithium-ion polymer batteries is examined. A LiCoO2 | gel polymer electrolyte (GPE) | mesocarbon microbeads (MCMB) cell delivers a discharge capacity of 146.8 and 144.5 mAh g−1 on the first and the 20th cycle, respectively. The specific discharge capacity is greater than 140 mAh g−1 for up to 20 cycle at all the current densities examined.  相似文献   

4.
《Journal of power sources》2006,158(1):654-658
Li[Ni1/3Co1/3Mn1/3]O2 was prepared by mixing uniform co-precipitated spherical metal hydroxide (Ni1/3Co1/3Mn1/3)(OH)2 with 7% excess LiOH followed by heat-treatment. The tap-density of the powder obtained was 2.38 g cm−3, and it was characterized using X-ray diffraction (XRD), particle size distribution measurement, scanning electron microscope-energy dispersive spectrometry (SEM-EDS) and galvanostatic charge–discharge tests. The XRD studies showed that the material had a well-ordered layered structure with small amount of cation mixing. It can be seen from the EDS results that the transition metals (Ni, Co and Mn) in Li[Ni1/3Co1/3Mn1/3]O2 are uniformly distributed. Initial charge and discharge capacity of 185.08 and 166.99 mAh g−1 was obtained between 3 and 4.3 V at a current density of 16 mA g−1, and the capacity of 154.14 mAh g−1 was retained at the end of 30 charge–discharge cycles with the capacity retention of 93%.  相似文献   

5.
《Journal of power sources》2006,163(1):158-165
Electrochemical characteristics of Li/FeS2 batteries having natural pyrite as cathode and liquid electrolytes have been studied at room temperature. The organic electrolytes used were 1 M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) in tetra(ethylene glycol) dimethyl ether (TEGDME) or a mixture of TEGDME and 1,3-dioxolane (DOX), and 1 M LiPF6 in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC). The pyrite powder and FeS2 cathode were characterized by SEM, EDS, XRD and charge/discharge cycling. The discharge capacities of Li/FeS2 cells with 1 M LiTFSI dissolved in TEGDME were 772 mAh g−1 at the 1st cycle and 313 mAh g−1 at the 25th cycle at 0.1C. The cycling performance could be improved by using a mixture of TEGDME and DOX as the electrolyte. It was found that TEGDME contributed to high initial discharge capacity, whereas, DOX contributed to better stabilization of the performance. The first discharge capacities of Li/FeS2 cells showed a decreasing trend with higher current densities (615 and 534 mAh g−1, respectively, at 0.5C and 1.0C). Li/FeS2 cells with the battery grade electrolyte 1 M LiPF6 in EC/DMC had lower initial discharge capacity and cycling capability compared to the TEGDME system. The natural pyrite cathode with 1 M LiTFSI dissolved in a mixture of TEGDME and DOX showed reasonably good first discharge capacity and overall cycling performance, suitable for application in room temperature lithium batteries.  相似文献   

6.
《Journal of power sources》2006,159(2):1458-1463
Ti45Zr35Ni17Cu3 amorphous and single icosahedral quasicrystalline powders were synthesized by mechanical alloying and subsequent annealing at 855 K. Microstructure and electrochemical properties of two alloy electrodes were characterized. When the temperature was enhanced from 303 to 343 K, the maximum discharge capacities increased from 86 to 329 mAh g−1 and 76 to 312 mAh g−1 for the amorphous and quasicrystalline alloy electrodes, respectively. Discharge capacities of two electrodes decrease distinctly with increasing cycle number. The I-phase is stable during charge/discharge cycles, and the main factors for its discharge capacity loss are the increase of the charge-transfer resistance and the pulverization of alloy particles. Besides the factors mentioned above, the formation of TiH2 and ZrH2 hydrides is another primary reason for the discharge capacity loss of the amorphous alloy electrode.  相似文献   

7.
《Journal of power sources》2006,156(2):615-619
A new type of layered nanocomposite synthesized by delaminated MoS2 nanosheets and poly(3,4-ethylenedioxythiophene) (PEDOT) are restacked to produce alternate polymer nanoribbons between layers of MoS2 with an interlayer distance of ∼1.38 nm. The unique properties of resulting nanocomposite are investigated by powder XRD, XPS, SEM, TEM, and four-probe conductivity measurements. The obtained nanocomposite can be used as a cathode material for a small power rechargeable lithium battery as demonstrated by the electrochemical insertion of lithium into the PEDOT/MoS2 nanocomposite. A significant enhancement in the discharge capacity (100 mAh g−1) is observed compared with that (40 mAh g−1) for MoS2.  相似文献   

8.
《Journal of power sources》2002,109(2):494-499
Nickel hydroxide is prepared by neutralizing NiSO4 solution with 4.8 M NaOH, followed by washing the precipitate and treating the slurry hydrothermally at different temperatures. The parameters varied are: initial nickel concentration; effect of presence of sodium ions during hydrothermal treatment; aging time after hydrothermal treatment. The samples so prepared are chemically analyzed and the physical and electrolytic properties such as tap density, percentage weight loss and discharge capacity are determined. On increasing the temperature from 60 to 160 °C, the discharge capacity increases from 52 to 112 mAh g−1. At 200 °C, the discharge capacity decreases to 94 mAh g−1. Allowing the hydroxide precipitate to age after hydrothermal treatment also causes a decrease in discharge capacity. The presence of excess sodium ions during hydrothermal treatment yields nickel hydroxide with a very low discharge capacity. The maximum discharge capacity of 160 mAh g−1 is obtained for nickel hydroxide prepared under the following conditions: nickel concentration 43 g l−1, neutralizing agent sodium hydroxide, time of hydrothermal treatment 2 h, temperature during hydrothermal treatment 160 °C. XRD patterns and FTIR spectra confirm the precipitate to be β-nickel hydroxide. The sample contains 62.89 wt.% Ni with a tap density of 0.96 g cm−3. TG–DTA measurements show a weight loss of 19% with an endothermic peak at 325 °C which corresponds to the decomposition of nickel hydroxide to nickel oxide. The present method of preparing nickel hydroxide through hydrothermal treatment reduces the aging time to 2 h and gives a product with good filtration characteristics.  相似文献   

9.
《Journal of power sources》2006,153(2):350-353
Nanoparticle of Li(Ni1/3Co1/3Mn1/3)O2 with size smaller than 40 nm was obtained by non-aqueous system co-precipitation method. The particle morphology and crystal plane orientation were observed by TEM and HRTEM. Electrochemical properties of this nanostructued material were studied with experiment cells. The results show that the material has high capacity of 160 mAh g−1 and excellent rate capability for charge and discharge. For the 50C and 100C rate, its capacity remains above 100 mAh g−1 after tens of cycles.  相似文献   

10.
《Journal of power sources》2005,140(1):125-128
The capacity of pure LiFePO4 faded gradually from initial 149 mAh g−1–117 mAh g−1 under current density of 30 mA g−1 at room temperature after 60 cycles. Some obvious cracks are observed in LiFePO4 particles after cycling. The formation of cracks would lead to poor electric contact and capacity fading. A possible mechanism is proposed for the appearance of the cracks.  相似文献   

11.
《Journal of power sources》2006,157(1):507-514
The effects of ball-milling on Li insertion into multi-walled carbon nanotubes (MWNTs) are presented. The MWNTs are synthesized on supported catalysts by thermal chemical vapour deposition, purified, and mechanically ball-milled by the high energy ball-milling. The purified MWNTs and the ball-milled MWNTs were electrochemically inserted with Li. Structural and chemical modifications in the ball-milled MWNTs change the insertion–extraction properties of Li ions into/from the ball-milled MWNTs. The reversible capacity (Crev) increases with increasing ball-milling time, namely, from 351 mAh g−1 (Li0.9C6) for the purified MWNTs to 641 mAh g−1 (Li1.7C6) for the ball-milled MWNTs. The undesirable irreversible capacity (Cirr) decreases continuously with increase in the ball-milling time, namely, from 1012 mAh g−1 (Li2.7C6) for the purified MWNTs to 518 mAh g−1 (Li1.4C6) for the ball-milled MWNTs. The decrease in Cirr of the ball-milled samples results in an increase in the coulombic efficiency from 25% for the purified samples to 50% for the ball-milled samples. In addition, the ball-milled samples maintain a more stable capacity than the purified samples during charge–discharge cycling.  相似文献   

12.
《Journal of power sources》2006,160(1):633-637
Lithium vanadium fluorophosphate, LiVPO4F, a cathode material for lithium ion batteries, was synthesized by a sol–gel method followed by low temperature calcinations. V2O5·nH2O hydro-gel, NH4H2PO4, LiF and carbon were used as starting materials to prepare a precursor, and LiVPO4F was finally obtained by sintering the precursor at 550 °C for 2 h. X-ray diffraction results show that the LiVPO4F sample is triclinic structure. TEM image indicates that the LiVPO4F particles are about 70 nm in diameter embedded in carbon network. The LiVPO4F system showed the discharge capacity of about 130 mAh g−1 in the range of 3.0–4.6 V at the first cycle, and the discharge capacity remained about 124 mAh g−1 after 30 cycles. The sol–gel method is suitable for the preparation of LiVPO4F cathode materials with good electrochemical Li intercalation performances.  相似文献   

13.
《Journal of power sources》2006,159(2):1370-1376
Due to the adequate viscosity of the chitosan-added precursor solutions, the films deposited from the chitosan-added precursor solution showed a higher deposition rate than the ones from the PVP-added solution under the same coating parameters. Furthermore, the chitosan-added precursor solution remained stable without any precipitation for at least 10 months. On the other hand, without the addition of chitosan, the precursor solution showed apparent precipitation after being stirred for 12 h. The enhanced stability of the precursor solution by the addition of chitosan is attributed to the complexation between metal ions and the –NH2 groups of chitosan. And the electrochemical behavior for the deposited films calcined at 700 °C for 1 h was also characterized by charge–discharge test. The result revealed that the film deposited from chitosan-containing precursor solution possesses an initial discharge capacity of 134 mAh g−1 and about 9% capacity loss after 50 charge/discharge cycles, which is better than the one deposited from chitosan-free precursor solution with an initial discharge capacity of 108 mAh g−1 and 24% capacity loss after 50 cycles.  相似文献   

14.
《Journal of power sources》2006,158(1):608-613
A new technique was employed to synthesize spinel LiMn2O4 cathode materials by adding cellulose and citric acid to an aqueous solution of lithium and manganese salts. Various synthesis conditions such as the calcination temperature and the citric acid-to-metal ion molar ratio (R) were investigated to determine the ideal conditions for preparing LiMn2O4 with the best electrochemical characteristics. The optimal synthesis conditions were found to be R = 1/3 and a calcination temperature of 800 °C. The initial discharge capacity of the material synthesized using the optimal conditions was 134 mAh g−1, and the discharge capacity after 40 cycles was 125 mAh g−1, at a current density of 0.15 mA cm−2 between 3.0 and 4.35 V. Details of how the initial synthesis conditions affected the capacity and cycling performance of LiMn2O4 are discussed.  相似文献   

15.
《Journal of power sources》2006,162(2):1312-1321
Lithium insertion and extraction in to/from the oxyfluorides TiOF2 and NbO2F is investigated by galvanostatic cycling, cyclic voltammetry and impedance spectroscopy in cells using Li-metal as a counter electrode at ambient temperature. The host compounds are prepared by low-temperature reaction and characterized by powder X-ray diffraction (XRD), Rietveld refinement and Brunauer, Emmett and Teller (BET) surface area. Crystal structure destruction occurs during the first-discharge reaction with Li at voltages below 0.8–0.9 V for LixTiOF2 as shown by ex situ XRD and at ≤1.4 V for LixNbO2F to form amorphous composites, ‘LixTi/NbOy–LiF’. Galvanostatic discharge–charge cycling of ‘LixTiOy’ in the range 0.005–3.0 V at a current density of 65 mA g−1 gives a capacity of 400 (±5) mAh g−1 during 5–100 cycles with no noticeable capacity fading. This value corresponds to 1.52 mol of recycleable Li/Ti. The coulombic efficiency (η) is >98%. Results on ‘LixNbOy’ show good reversibility of the electrode and a η >98% is achieved only after 10 cycles (range 0.005–3.0 V and at 30 mA g−1) and a capacity of 180 (±5) mAh g−1 (0.97 mol of Li/Nb) was stable up to 40 cycles. In both ‘LixTiOy’ and ‘LixNbOy’, the average discharge and charge voltages are 1.2–1.4 and 1.7–1.8 V, respectively. The impedance spectral data measured during the first cycle and after selected numbers of cycles are fitted to an equivalent circuit and the roles played by the relevant parameters as a function of cycle number are discussed.  相似文献   

16.
LiNi0.5Mn1.5O4 material with a spinel structure is prepared by a sol–gel method. The material is initially fired at 850 °C and then subjected to a post-reaction annealing at 600 °C in order to minimize the nickel deficiency. The elevated firing temperature produces materials with a small surface-area which is beneficial for good capacity retention. Indeed, the spinel LiNi0.5Mn1.5O4 not only shows a good cycle performance, but exhibits an excellent discharge capacity, i.e. 114 mAh g−1 at 4.66 V plateau and 127 mAh g−1 in total. Cyclic voltammetry and ac impedance spectroscopy are employed to characterize the reactions of lithium insertion and extraction in the LiNi0.5Mn1.5O4 electrode. Excellent electrochemical performance and low material cost make this compound an attractive cathode for advanced lithium batteries.  相似文献   

17.
Activated carbon fiber (ACF) containing Sn nanoparticles were prepared by impregnation and were investigated as a negative electrode material in lithium batteries. The tin particle size was controlled by selecting an ACF with an adequate surface structure. This Sn/ACF composite cycled versus Li metal showed a first discharge capacity as high as 200 mAh g−1 compared to the pristine ACF which showed only 87 mAh g−1. Excellent cyclability with these composites was obtained with ACF BET SSA as large as 2000 m2 g−1 and 30 wt.% Sn.  相似文献   

18.
《Journal of power sources》2006,153(2):371-374
Cu5Si–Si/C composites with precursor atomic ratio of Si:Cu = 1, 2 and 4.5 have been produced by high-energy ball-milling of a mixture of copper–silicon alloy and graphite powder for anode materials of lithium-ion battery. X-ray diffraction and scanning electron microscope measurements show that Cu5Si alloy is formed after the intensive ball milling and alloy particles along with low-crystallite Si are interspersed in graphite uniformly. Cu5Si–Si/C composite electrodes deliver a larger reversible capacity than commercialized graphite and better cyclability than silicon. The increase of copper amount in the composites decreases reversible capacity but improves cycling performance. Cu5Si–Si/C composite with Si:Cu = 1 demonstrates an initial reversible capacity of 612 mAh g−1 at 0.2 mA cm−2 in the voltage range from 0.02 to 1.5 V. The capacity retention is respectively 74.5 and 70.0% at the 40th cycle at the current density of 0.2 and 1 mA cm−2.  相似文献   

19.
《Journal of power sources》2003,124(1):170-173
All-solid-state cells of In/LiNi0.5Mn0.5O2 using a superionic oxysulfide glass with high conductivity at room temperature of 10−3 S cm−1 as a solid electrolyte were fabricated and the cell performance was investigated. Although a large irreversible capacity was observed at the 1st cycle, the solid-state cells worked as lithium secondary batteries and exhibited excellent cycling performance after the 2nd cycle; the cells kept charge–discharge capacities around 70 mAh g−1 and its efficiency was almost 100%. This is the first case to confirm that all-solid-state cells using manganese-based layer-structured cathode materials work as lithium secondary batteries.  相似文献   

20.
《Journal of power sources》2006,159(1):312-318
Synthesis and characterization of poly (3,4-ethylenedioxythiophene) (PEDOT) interleaved between the layers of crystalline oxides of V and Mo is discussed with special emphasis on their application potential as electrodes for rechargeable Li batteries and supercapacitors. The expansion of the interlayer spacing of crystalline oxides (for example, V2O5 causes expansion from 0.43 to 1.41 nm) is consistent with a random layer stacking structure. These hybrid nanocomposites when coupled with a large-area Li foil electrode in 1 M LiClO4 in a mixture of ethylene and dimethylcarbonate (1:1, v/v), give enhanced discharge capacity compared to pristine oxides. For example a discharge capacity of ∼350 mAh g−1, in the potential range 4.2–2.1 V (versus Li+/Li) is obtained for PEDOT–V2O5 hybrid which is significantly large compared to that for simple Li-intercalated V2O5. The improvement of electrochemical performance compared with that of pristine oxides is attributed to higher electric conductivity, enhanced bi-dimensionality and increased structural disorder. Although these conducting polymer-oxide hybrids delivered more than 300 mAh g−1 in the potential range 1.3–4.3 V, their cycle life needs further improvements to realize their commercial potential. Similarly, the double layer capacitance of MoO3 increases from ∼40 mF g−1 to ∼300 F g−1 after PEDOT incorporation in the interlayer gap of MoO3 under similar experimental conditions and the nanocomposite displays intriguing effects with respect to electrochemical Li+ insertion. The PEDOT–MoO3 nanocomposite appears to be a promising electrode material for non-aqueous type supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号