首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The B allele of the bovine αS2-casein gene (CSN1S2) was characterized at the molecular level and the distribution of zebu-specific milk protein alleles was determined in 26 cattle breeds originating from 3 continents. The CSN1S2 *B allele is characterized by a C → T transition affecting nucleotide 17 of exon 3, which leads to a change in the eighth amino acid of the mature protein, from Ser to Phe (i.e., TCC →TCC). DNA-based methods were developed to identify carriers of CSN1S2*B and the other alleles (CSN1S2 *A, C, and D) at the same locus. CSN1S2*B and other zebu-specific milk protein alleles and casein haplotypes are widely distributed in European cattle breeds, particularly those of southeastern origin. Alleles CSN1S2 *B and CSN3*H are important in searching for zebu imprints in European cattle breeds. Diversity estimates at the milk protein loci were highest in the zebus followed by southeastern European taurines. Anatolian Black had the highest number of zebu alleles among European taurines. Common, group, and intergroup haplotypes occurred in the breeds and demonstrated relationships that concurred with developmental histories, genetic makeup, and, in particular, exposed the extent of zebu influence on southeastern European cattle.  相似文献   

2.
The objective of this study was to analyze the genetic variability of milk proteins of the Carora, a shorthorned Bos taurus cattle breed in Venezuela and in other Southern American countries that is primarily used for milk production. A total of 184 individual milk samples were collected from Carora cattle in 5 herds in Venezuela. The milk protein genes αs1-casein (CN) (CSN1S1), β-CN (CSN2), κ-CN (CSN3), and β-lactoglobulin (LGB) were typed at the protein level by isoelectrofocusing. It was necessary to further analyze CSN1S1 at the DNA level by a PCR-based method to distinguish CSN1S1*G from B. Increased variation was found in particular at the CSN1S1 gene, where 4 variants were identified. The predominant variant was CSN1S1*B (frequency = 0.8). The second most common CSN1S1 variant was CSN1S1*G (0.101), followed by CSN1S1*C (0.082). Moreover, a new isoelectrofocusing pattern was identified, which may result from a novel CSN1S1 variant, named CSN1S1*I, migrating at an intermediate position between CSN1S1*B and CSN1S1*C. Six cows carried the variant at the heterozygous condition. For the other loci, predominance of CSN2*A2 (0.764), CSN3*B (0.609), and LGB*B (0.592) was observed. Haplotype frequencies (AF) at the CSN1S1-CSN2-CSN3 complex were also estimated by taking association into account. Only 7 haplotypes showed AF values >0.05, accounting for a cumulative frequency of 0.944. The predominant haplotype was B-A2-B (frequency = 0.418), followed by B-A2-A (0.213). The occurrence of the G variant is at a rather high frequency, which is of interest for selection within the Carora breed because of the negative association of this variant with the synthesis of the specific protein. From a cheese-making point of view, this variant is associated with improved milk-clotting parameters but is negatively associated with cheese ripening. Thus, milk protein typing should be routinely carried out in the breed, with particular emphasis on using a DNA test to detect the CSN1S*G variant. The CSN1S*G allele is likely to have descended from the Brown Swiss, which contributed to the Carora breed and also carries this allele.  相似文献   

3.
Milk protein genetic polymorphisms are often used for characterizing domesticated mammalian species and breeds, and for studying associations with economic traits. The aim of this work was to analyze milk protein genetic variation in the Original Pinzgauer, a dual-purpose (dairy and beef) cattle breed of European origin that was influenced in the past by human movements from different regions as well as by crossbreeding with Red Holstein. A total of 485 milk samples from Original Pinzgauer from Austria (n = 275) and Germany (n = 210) were typed at milk proteins αS1-casein, β-casein, κ-casein, α-lactalbumin, and β-lactoglobulin by isoelectrofocusing to analyze the genetic variation affecting the protein amino acid charge. The Original Pinzgauer breed is characterized by a rather high genetic variation affecting the amino acid charge of milk proteins, with a total of 15 alleles, 12 of which were found at a frequency >0.05. The most polymorphic protein was β-casein with 4 alleles detected. The prevalent alleles were CSN1S1*B, CSN2*A2, CSN1S2*A, CSN3*A, LGB*A, and LAA*B. A relatively high frequency of CSN1S2*B (0.202 in the whole data set) was found, mainly occurring within the C-A2-B-A haplotype (in the order CSN1S1-CSN2-CSN1S2-CSN3), which seems to be peculiar to the Original Pinzgauer, possibly because the survival of an ancestral haplotype or the introgression of Bos indicus.  相似文献   

4.
The aim of this work was to study the effects of isoelectrofocusing (IEF) milk protein variants on milk composition in the Italian Orobica goat breed, which is characterized by a rather high frequency of the κ-casein (CSN3) BIEF allele. Significant associations were found between the IEF phenotype and protein and casein percentages. A favorable effect of the CSN3 BIEF variant was found for both protein and casein percentages, with a codominance trend for the 3 phenotypes: BB > AB > AA. Depending on the selection purpose, emphasis could be given to different κ-casein variants in breeding. The high frequency of BIEF could be exploited in breeding strategies to improve the protein and casein percentages when cheese making is a selection objective.  相似文献   

5.
The effects of the caprine αS1-casein (CSN1S1) polymorphisms on milk quality have been widely demonstrated. However, much less is known about the consequences of the κ-casein (CSN3) genotype on milk composition in goats. Moreover, the occurrence of interactions between CSN3 and CSN1S1 genotypes has not been investigated. In this study, an association analysis between CSN1S1 and CSN3 genotypes and milk quality traits was performed in 89 Murciano-Granadina goats. Total milk yield as well as total protein, fat, solids-not-fat, lactose, αS1-casein (CSN1S1), and αS2-casein (CSN1S2) contents were recorded every other month during a whole lactation (316 observations). Data analysis using a linear mixed model for repeated observations revealed no interaction between the CSN1S1 and CSN3 genotypes. With regard to the effect of the CSN3 locus, AB and BB genotypes were significantly associated with higher levels of total casein and protein content compared with the AA CSN3 genotype. In strong contrast with French breeds, the CSN1S1 genotype did not affect protein, casein, and fat concentrations in Murciano-Granadina goats. These results highlight the importance of taking into consideration the CSN3 genotype when performing selection for milk composition in dairy goats.  相似文献   

6.
The analysis of casein polymorphisms in goat species is rather difficult, because of a large number of mutations at each locus, and the tight linkage involving the 4 casein genes. Three goat breeds from Northern Italy, Orobica, Verzasca, and Frisa, were analyzed at the casein complex by milk isoelectrofocusing and analyses at the DNA level to identify the majority of all known polymorphisms. The casein gene structure of the 3 local breeds at αS1-casein (CSN1S1), β-casein (CSN2), αS2-casein (CSN1S2), and κ-casein (CSN3) was compared with that of Camosciata, a more widely distributed breed. A new allele was identified and characterized at CSN2 gene, which seemed to be specific to the Frisa breed. It was named CSN2*E, and was characterized by a transversion TCT → TAT responsible for the amino acid exchange Ser166 → Tyr166 in the mature protein. The casein haplotype structure is highly different among breeds. A total of 26 haplotypes showed a frequency higher than 0.01 in at least 1 of the 4 breeds considered, with 12, 3, 5, and 19 haplotypes in Frisa, Orobica, Verzasca, and Camosciata breeds, respectively. Only 13 haplotypes occurred at a frequency higher than 0.05 in at least 1 breed. With the molecular knowledge of each locus, the ancestral haplotype coding for CSN1S1*B, CSN2*A, CSN1S2*A, and CSN3*B protein variants can be postulated. A protein evolutionary model considering the whole casein haplotype is proposed.  相似文献   

7.
《Journal of dairy science》2022,105(8):6783-6794
Milk is a primary protein source that has always played a role in mammalian health. Despite the intensification of research projects on dromedary and the knowledge of the genetic diversity at the casein loci, the genetic structure of the Tunisian camel population still needs exploration. This study sought to determine the genetic diversity of 3 casein gene variants in 5 Tunisian camel ecotypes: c.150G>T at CSN1S1S1-casein), g.2126A>G at CSN2-casein), and g.1029T>C at CSN3-casein). The obtained results were compared with data published on Sudanese and Nigerian camels to establish the level of differentiation within and between populations. A total of 159 blood samples were collected from 5 Tunisian camel ecotypes and the extracted DNA was genotyped by PCR-RFLP. A streamlined genotyping protocol was also developed for CSN3. Results indicated that allele T was quite rare (0.06) at CSN1S1 for all ecotypes. Minor allele frequency was found for G (0.462) in CSN2 except for Ardhaoui Medenine ecotype who deviated from the average CSN2 allele frequency of the total population. Allele C showed minor allele frequency of 0.384 in CSN3. Among the Tunisian population, GAT (0.343) was the most represented haplotype in all ecotypes except for Ardhaoui Medenine, where GGC (0.322) was the most frequent one. Significant differences in heterozygosity and local inbreeding were observed across the Tunisian, Sudanese, and Nigerian populations, although the global fixation index indicated that only 2.2% of the genetic variance is related to ecotype differences. Instead, phylogenetic analysis revealed a closer link between the Tunisian and Sudanese populations through a clade subdivision with 3 main branches among the ecotypes. This study represents the first attempt to understand casein gene variability in Tunisian camels; with further study, milk traits and genetic differentiation among populations can be associated with the history of camel domestication.  相似文献   

8.
Polymorphisms in 5′-flanking regions of milk protein encoding genes can influence the binding activity of the affected response elements and thus have an impact on the expression of the gene products. However, precise quantitative data concerning the binding properties of such variable response elements have so far not been described. In this study we present the results of a quantitative fluorescent electromobility shift assay comparing the allelic variants of a polymorphic activator protein-1 binding site in the promoter region of the bovine αs1-casein encoding gene (CSN1S1), which is affected by an A→G exchange at −175 bp (CSN1S1−175bp). A supershift assay using a commercial c-jun antibody was carried out to verify the specificity of protein binding. The gel shift analysis revealed specific and significantly reduced protein binding of oligonucleotides containing the G variant of the CSN1S1−175bp binding site. Further investigations comprised genotyping of the variable CSN1S1−175bp activator protein-1 element by an NmuCl restriction fragment length polymorphism in 62 cows of the breed Simmental and 80 cows of the breed German Holstein. Single milk proteins from at least 4 milk samples per cow were quantified by alkaline urea polyacrylamide gel electrophoresis. Homozygotes for CSN1S1−175bp*G were not observed, and the allele frequencies were 0.19 in Simmental and 0.05 in German Holstein. Carriers of CSN1S1−175bp*G showed higher content (%) as well as quantity (g/d) of αs1-casein than CSN1S1−175bp*A homozygotes, independent of breed. We assume that the positive association of the CSN1S1−175bp*G variant with CSN1S1 expression is likely to be caused by a reduced affinity of the affected response element to a c-jun-containing CSN1S1 dimer with repressor properties.  相似文献   

9.
The aim of the study was to estimate the effect of the composite CSN2 and CSN3 genotypes on milk coagulation, quality, and yield traits in Italian Holstein cows. A total of 1,042 multiparous Holstein cows reared on 34 commercial dairy herds were sampled once, concurrently with monthly herd milk recording. The data included the following traits: milk coagulation time; curd firmness; pH and titratable acidity; fat, protein, and casein contents; somatic cell score; and daily milk, fat, and protein yields. A single-trait animal model was assumed with fixed effects of herd, days in milk, parity, composite casein genotype of CSN2 and CSN3 (CSN2-CSN3), and random additive genetic effect of an animal. The composite genotype of CSN2-CSN3 showed a strong effect on both milk coagulation traits and milk and protein yields, but not on fat and protein contents and other milk quality traits. For coagulation time, the best CSN2-CSN3 genotypes were those with at least one B allele in both the CSN2 and CSN3 loci. The CSN3 locus was associated more strongly with milk coagulation traits, whereas the CSN2 locus was associated more with milk and protein yields. However, because of the tight linkage between the 2 loci, the composite genotypes, or haplotypes, are more appropriate than the single-locus genotypes if they were considered for use in selection.  相似文献   

10.
The study provides the first comprehensive information on the variability of milk protein genes of Bos indicus and Bos taurus cattle breeds in Cameroon and Nigeria. The investigations indicate a high diversity of milk protein genes for the zebu populations. Of the investigated alleles, 21 out of 29 were observed. The method of single strand conformation polymorphism (SSCP) was a particularly useful technique because it allowed discrimination of alleles, including zebu-specific alleles at the CSN2 (I) and CSN3 (A(I) and H) loci, not separated by protein electrophoretic techniques and also made possible the detection of a further CSN1S1 5' promoter allele (CSNIS1Prom5), which is also zebu-specific. Characterization of CSN1S1Prom5 showed that it was the most variable of all described CSN1S1 promoter alleles. A potential GATA consensus motif is created by mutations in CSN1S1Prom5. Intra-breed diversity measured as mean effective number of alleles was higher in the zebu populations than in the taurine breeds. Of the expected casein haplotypes, 96 out of 320 were present in the studied breeds. 2-C-A-A2-H (CSN1SIProm2-CSN1S1C-CSN1S2A-CSN2A2-CSN3H) and 5-C-A-A2-H were zebu-specific while 1-B-A-A2-B was specific to the taurines. Overall distribution of alleles and haplotypes clearly separated the zebu populations from the taurine breeds. Zebu influence on the taurine breed Namchi was detected through the occurrence of zebu alleles and haplotypes. High variability of milk proteins also means availability of resources for breed development, phylogenetic studies, and conservation and management decisions.  相似文献   

11.
The aim of this study was to investigate the effects of CSN2-CSN3 (β-κ-casein) haplotypes and BLG (β-lactoglobulin) genotypes on milk production traits, content of protein fractions, and detailed protein composition of individual milk of Simmental cows. Content of the major protein fractions was measured by reversed-phase HPLC in individual milk samples of 2,167 cows. Protein composition was measured as percentage of each casein (CN) fraction to total CN and as percentage of β-lactoglobulin (β-LG) to total whey protein. Genotypes at CSN2, CSN3, and BLG were ascertained by reversed-phase HPLC, and CSN2-CSN3 haplotype probabilities were estimated for each cow. Traits were analyzed by using a linear model including the fixed effects of herd-test-day, parity, days in milk, and somatic cell score class, linear regressions on haplotype probabilities, class of BLG genotype, and the random effect of the sire of the cow. Effects of haplotypes and BLG genotypes on yields were weak or trivial. Genotype BB at BLG and haplotypes carrying CSN2 B and CSN3 B were associated with increased CN content and CN number. Haplotypes including CSN3 B were associated with increased κ-CN content and percentage of κ-CN to total CN and with decreased percentages of αS1- and γ-CN to total CN. Allele CSN2 B had the effect of increasing β-CN content and decreasing content of αS1-CN. Haplotypes including allele CSN2 A1 exhibited decreased β-, αS2-, and γ-CN concentrations and increased αS1- and κ-CN contents, whereas CSN2 I had positive effects on β-CN concentration and trivial effects on content of other protein fractions. Effects of haplotypes on CN composition were similar to those exerted on content of CN fractions. Allele BLG A was associated with increased β-LG concentration and percentage of β-LG to total whey protein and with decreased content of other milk proteins, namely β-CN and αS1-CN. Estimated additive genetic variance for investigated traits ranged from 14 to 39% of total variance. Increasing the frequency of specific genotypes or haplotypes by selective breeding might be an effective way to change milk protein composition.  相似文献   

12.
The aim of this study was to estimate effects of CSN1S1-CSN3S1-κ-casein) composite genotypes on milk production traits and milk coagulation properties (MCP) in Mediterranean water buffalo. Genotypes at CSN1S1 and CSN3 and coagulation properties [rennet clotting time (RCT), curd firming time (K20), and curd firmness (A30)] were assessed by reversed-phase HPLC and computerized renneting meter analysis, respectively, using single test-day milk samples of 536 animals. Alternative protein variants of αS1-CN and κ-CN were detected by HPLC, and identification of the corresponding genetic variants was carried out by DNA analysis. Two genetic variants were detected at CSN1S1 (A and B variants) and 2 at CSN3 (X1 and X2 variants). Statistical inference was based on a linear model including the CSN1S1-CSN3 composite genotype effect (7 genotypes), the effects of herd-test-day (8 levels), and a combined days in milk (DIM)-parity class. Composite genotype AB-X2X2 was associated with decreased test-day milk yield [?0.21 standard deviation (SD) units of the trait] relative to genotype BB-X2X2. Genotypes did not affect milk protein content, but genotype AB-X1X1 was associated with increased fat content compared with genotype BB-X2X2 (+0.28 SD units of the trait) and AB-X1X1 (+0.43 SD units of the trait). For RCT, the largest difference (+1.91 min; i.e., 0.61 SD units of the trait) was observed between genotype AA-X1X2 and AB-X1X1. Direction of genotype effects on K20 was consistent with that for RCT. The maximum variation in K20 due to genotype effects (between AA-X1X2 and AB-X1X1 genotypes) was almost 0.9 SD units of the trait. Magnitude of genotype effects was smaller for A30 than for RCT and K20, with a maximum difference of 0.5 SD units of the trait between genotype AA-X1X2 and AA-X1X1. The B allele at CSN1S1 was associated with increased RCT and K20 and with weaker curds compared with allele A. Allele X2 at CSN3 exerted opposite effects on MCP relative to CSN1S1 B. Because of linkage disequilibrium, allele B at CSN1S1 and allele X2 at CSN3 tend to be associated and this likely makes their effects cancel each other. This study indicates a role for casein genes in variation of MCP of buffalo milk. Further studies are necessary to estimate the effects of casein genetic variants on variation of cheese yield.  相似文献   

13.
Variants of κ-casein (CSN3) have been extensively studied in cattle and 13 alleles have been identified at the protein and DNA levels to date. Evolution of some of these alleles and a possible common ancestor remain unclear. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis of CSN3 exon IV in domesticated yak revealed a 2-allele polymorphism showing migration patterns different from known cattle variants. The PCR products of both yak CSN3 SSCP alleles were sequenced. All yak had nucleotide sequences coding for Thr in AA position 136 (identical to bovine CSN3*A) and Ala in position 148 (identical to bovine CSN3*B). The sequencing results were confirmed by PCR-RFLP analysis using HindIII and TaqI. A 12-bp insertion in the coding region, representing a repeated nucleotide and AA motif, was found in 1 yak allele. The duplication corresponds to the codons for AA 147 to 150 (Glu-Ala-Ser-Pro) or 148 to 151 (Ala-Ser-Pro-Glu), which are repeated identically. In 21 yak samples genotyped by PCR-SSCP analysis, frequencies for the insertion variant and the short variant were about 68 and 32%, respectively. The loss of the insertion may have led to the ancestral CSN3 allele from which all currently known variants of CSN3 in the genus Bos evolved. This is the first report of polymorphisms in the yak CSN3 gene and may be helpful for future studies on genetic variation within and between yak populations or on associated traits.  相似文献   

14.
In the Mediterranean region, goat milk production is an important economic activity. In the present study, 4 casein genes were genotyped in 5 Sicilian goat breeds to 1) identify casein haplotypes present in the Argentata dell’Etna, Girgentana, Messinese, Derivata di Siria, and Maltese goat breeds; and 2) describe the structure of the Sicilian goat breeds based on casein haplotypes and allele frequencies. In a sample of 540 dairy goats, 67 different haplotypes with frequency ≥0.01 and 27 with frequency ≥0.03 were observed. The most common CSN1S1-CSN2-CSN1S2-CSN3 haplotype for Derivata di Siria and Maltese was FCFB (0.17 and 0.22, respectively), whereas for Argentata dell’Etna, Girgentana and Messinese was ACAB (0.06, 0.23, and 0.10, respectively). According to the haplotype reconstruction, Argentata dell’Etna, Girgentana, and Messinese breeds presented the most favorable haplotype for cheese production, because the casein concentration in milk of these breeds might be greater than that in Derivata di Siria and Maltese breeds. Based on a cluster analysis, the breeds formed 2 main groups: Derivata di Siria, and Maltese in one group, and Argentata dell’Etna and Messinese in the other; the Girgentana breed was between these groups but closer to the latter.  相似文献   

15.
Most variability in goat caseins originates from the high number of genetic polymorphisms often affecting the specific protein expression, with strong effects on milk composition traits and technological properties. At least 7 alleles have been found in the goat αS2-CN gene (CSN1S2). Five of them (CSN1S2*A, CSN1S2*B, CSN1S2*C, CSN1S2*E, and CSN1S2*F) are widespread in most breeds, whereas the other 2 (CSN1S2*D and CSN1S2*0) are rarer alleles. Four different PCR-RFLP tests are needed to detect all of these variants at the DNA level. The objective of this study was to develop and validate a rapid method for typing 4 of the 5 most-common goat CSN1S2 alleles by means of PCR-single strand conformation polymorphism (SSCP). The method was validated by analyzing 37 goat samples at the protein and DNA level, respectively, by milk isoelectrofocusing and PCR-RFLP methods already described. The genotypes obtained using the PCR-SSCP approach were in full agreement with those obtained by the validation analyses. The newly developed PCR-SSCP approach provides an accurate and inexpensive assay highly suitable for genotyping goat CSN1S2.  相似文献   

16.
The variation in the casein genes has a major impact on the milk composition of goats. Even though many casein polymorphisms have been identified so far, we do not know yet whether they are evolutionarily ancient (i.e., they existed before domestication) or young (i.e., they emerged after domestication). Herewith, we identified casein polymorphisms in a data set of 106 caprine whole-genome sequences corresponding to bezoars (Capra aegagrus, the ancestor of domestic goats) and 4 domestic goat (Capra hircus) populations from Europe, Africa, the Far East, and the Near East. Domestic and wild goat populations shared a substantial number of casein SNP, from 36.1% (CSN2) to 55.1% (CSN1S2). The comparison of casein variation among bezoars and the 4 domestic goat populations demonstrated that more than 50% of the casein SNP are shared by 2 or more populations, and 18 to 44% are shared by all populations. Moreover, the majority of casein alleles reported in domestic goats also segregate in the bezoar, including several alleles displaying significant associations with milk composition (e.g., the A/B alleles of the CSN1S1 and CSN3 genes, the A allele of the CSN2 gene). We conclude that much of the current diversity of the caprine casein genes comes from ancient standing variation segregating in the ancestor of modern domestic goats.  相似文献   

17.
The aim of this study was to investigate the effects of CSN2-CSN3 (β-κ-casein) haplotypes, BLG (β-lactoglobulin) genotypes, content of milk protein fractions, and protein composition on coagulation properties of milk (MCP). Rennet coagulation time (RCT) and curd firmness (a30) were measured using a computerized renneting meter, and the contents of major milk protein fractions were quantified by reversed-phase HPLC in individual milk samples of 2,167 Simmental cows. Cow genotypes at CSN2, CSN3, and BLG were ascertained by reversed-phase HPLC, and CSN2-CSN3 haplotype probabilities were estimated for each cow. Phenotypes for MCP were regressed on CSN2-CSN3 haplotype probabilities using linear models that also included the effects of herd-test-day, parity, days in milk, pH, somatic cell score, renneting meter sensor, sire of the cow, BLG genotype, and content of major protein fractions or, alternatively, protein composition. When the statistical model did not account for protein fraction contents or protein composition, haplotypes carrying CSN3 B were associated with shorter RCT and greater a30 compared with those carrying CSN3 A. Haplotypes carrying CSN2 B had the effect of decreasing RCT and increasing a30 relative to haplotype A2A. When effects of protein fractions content or protein composition were added to the model, no difference across haplotypes due to CSN3 and CSN2 alleles was observed for MCP, with the exception of the effect of CSN2 B on RCT, which remained markedly favorable. Hence, the effect of CSN3 B on MCP is related to a variation in protein composition caused by the allele-specific expression of κ-casein, rather than to a direct role of the protein variant on the coagulation process. In addition, the favorable effect exerted by CSN2 B on a30 was caused by the increased β-casein content in milk. Conversely, CSN2 B is likely to exert a direct genetic effect on RCT, which does not depend upon variation of β-casein content associated with CSN2 B. Increased RCT was observed for milk yielded by BLG BB cows, even when models accounted for protein composition. Rennet clotting time was favorably affected by κ-casein content and percentage of κ-casein to total casein, whereas a30 increased when contents and percentages of β-CN and κ-CN increased. Changes of milk protein composition and allele frequency at casein and whey protein genes affect variation of MCP.  相似文献   

18.
The aim of this work was to investigate the genetic structure of the casein gene cluster in 5 Italian goat breeds and to evaluate the haplotype variability within and among populations. A total of 430 goats from Vallesana, Roccaverano, Jonica, Garganica, and Maltese breeds were genotyped at alphas1-casein (CSN1S1), alphas2-casein, (CSN1S2), beta-casein (CSN2), and kappa-casein (CSN3) loci using several genomic techniques and milk protein analysis. Casein haplotype frequencies were estimated for each breed. Principal component analysis was carried out to highlight the relationship among breeds. Allele and haplotype distributions indicated considerable differences among breeds. The haplotype CSN1S1*F- CSN1S2*F-CSN3*D occurred in all breeds with frequencies >0.100 and was the most common haplotype in the Southern breeds. A high frequency of CSN1S1*0-CSN1S2*C-CSN3*A haplotype was found in Vallesana population (0.162). Principal component analysis clearly separated the Northern and Southern breeds by the first component. The variability of the caprine casein loci and variety of resulting haplotypes should be exploited in the future using specific breeding programs aiming to preserve biodiversity and to select goat genetic lines for specific protein production.  相似文献   

19.
Sequencing of ovine CSN1S1*H cDNA showed an absence of exon 8 in comparison with GenBank sequences; the absence was confirmed by protein sequencing. We demonstrated that this allelic aberration is the result of a deletion of 4 nucleotides, the last 3 of exon 8 and the first 1 of intron 8, which are replaced by an insertion of 13 nucleotides in the DNA sequence. The insertion is a precise duplication of a part of the adjacent intronic sequence of CSN1S1*C″. These sequence differences result in an inactivation of the splice donor sequence distal to exon 8, leading to upstream exon skipping during the serial splice reactions of the ovine CSN1S1*H pre-mRNA, and may affect the specific casein expression as well as protein characteristics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号