首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Staphylococcus aureus belongs to the group of major contagious mastitis pathogens, whereas the coagulase-negative staphylococci (CNS) are also capable of causing opportunistic bovine mastitis. Many of these strains are resistant to penicillin or ampicillin because of the long-term use of β-lactam antibiotics in agricultural and healthcare settings. Based on the simple and highly specific coagulase genotyping by PCR-RFLP used for discriminating among Staph. aureus strains, the relationship between phenotypic antibiogram and the polymorphism of coagulase gene was determined in this study. The staphylococci strains (835 Staph. aureus and 763 CNS) were isolated from 3,047 bovine mastitic milk samples from 153 dairy farms in 8 provinces from 1997 to 2004 in the Republic of Korea. Twenty-one (2.5%) Staph. aureus and 19 (2.4%) CNS strains were resistant to methicillin [oxacillin minimum inhibitory concentration (MIC) ≥4 μg/mL]. The mecA gene was also found in 13 methicillin-resistant Staph. aureus (MRSA) and 12 methicillin-resistant CNS (MRCNS) isolates with a significantly higher detection rate of the mecA gene in MRSA with high MIC (≥16 μg/mL) compared with those with MIC ≤ 8 μg/mL. Methicillin-resistant Staph. aureus and MRCNS were also more resistant to other antibiotics (ampicillin, cephalothin, kanamycin, and gentamicin) than methicillin-susceptible staphylococci. Among 10 different coa PCR-RFLP patterns (A to J) in 706 Staph. aureus strains, the main types were A (26.9%), B (17.0%), G (10.5%), and H (15.4%), with the frequent observation of the A and H types (6 and 10 isolates) in MRSA. This study indicates that major epidemic Staph. aureus clones may be spread between different dairy farms, and the profile of coa genotype can be applied for epidemiological investigations and control of bovine mastitis, particularly one caused by MRSA with specific prevalent coa types.  相似文献   

2.
Staphylococcus aureus produces exoproteins that contribute to its ability to colonize the mammary gland such as hemolysins, coagulase, slime, and protein A. This study characterized phenotypically and genotypically these virulence factors in 50 Staph. aureus isolates. These isolates were obtained from milk samples from subclinical mastitis cases identified in 15 dairy cattle farms located in the state of Rio de Janeiro, Brazil. All of the confirmed Staph. aureus samples were PCR positive for the coa gene, which displayed 3 different size polymorphisms. The amplification of the spaA X region yielded a single amplicon for each isolate with the prevalent amplicon sized 315 bp. The Staph. aureus isolates were 24 and 16% positive for the hla and hlb genes, respectively, and 22 and 20% positive for the icaA and icaD genes, respectively. Amplification of the agr gene RNAIII was positive in 74% of the strains. Twenty-seven different profiles were identified among the samples, indicating a great diversity of Staph. aureus involved in the etiology of mastitis cases in the analyzed region. These findings are valuable to the comprehension of the distribution of the profiles of Staph. aureus strains isolated from subclinical mastitis cases in the state of Rio de Janeiro.  相似文献   

3.
This study aimed to investigate the in silico biofilm production ability of Staphylococcus aureus strains isolated from milking parlor environments on dairy farms from São Paulo, Brazil. The Staph. aureus isolates were obtained from 849 samples collected on dairy farms, as follows: milk from individual cows with subclinical mastitis or history of the disease (n = 220); milk from bulk tank (n = 120); surfaces of milking machines and utensils (n = 389); and milk handlers (n = 120). Thirty-one Staph. aureus isolates were obtained and categorized as pulsotypes by pulsed-field gel electrophoresis and submitted to assays for biofilm formation on polystyrene, stainless steel, rubber, and silicone surfaces. Fourteen (45.2%) pulsotypes were considered producers of biofilm on the polystyrene microplate assay, whereas 13 (41.9%) and 12 (38.7%) pulsotypes were biofilm producers on stainless steel and rubber, respectively. None of the pulsotypes evaluated produced biofilms on silicone. Approximately 45% of Staph. aureus pulsotypes isolated from different sources on dairy farms showed the ability to produce biofilms in at least one assay, indicating possible persistence of this pathogen in the milking environment. The potential involvement of Staph. aureus in subclinical mastitis cases and its occurrence in milk for human consumption emphasize the need to improve hygiene practices to prevent biofilm formation on the farms studied.  相似文献   

4.
《Journal of dairy science》2021,104(9):10250-10267
Mastitis is a prevalent disease in dairy cattle, and staphylococci are among the most common causative pathogens. Staphylococci can express resistance to a range of antimicrobials, of which methicillin resistance is of particular public health concern. Additionally, Staphylococcus aureus carries a variety of virulence factors, although less is understood about the virulence of non-aureus staphylococci (NAS). The aim of our study was to identify and characterize 3 collections of staphylococcal isolates from bovine milk samples regarding antimicrobial resistance, with emphasis on methicillin resistance, and their carriage of virulence genes typically displayed by Staph. aureus. A total of 272 staphylococcal isolates collected in Norway and Belgium in 2016 were included, distributed as follows: group 1, Norway, 100 isolates; group 2, Flanders, Belgium, 64 isolates; group 3, Wallonia, Belgium, 108 isolates. Species identification was performed by use of MALDI-TOF mass spectrometry. Phenotypic resistance was determined via disk diffusion, and PCR was used for detection of methicillin resistance genes, mecA and mecC, and virulence genes. Antimicrobial resistance was common in Staphylococcus epidermidis and Staphylococcus haemolyticus from all different groups, with resistance to trimethoprim-sulfonamide frequently occurring in Staph. epidermidis and Staph. haemolyticus as well as in Staph. aureus. Resistance to penicillin was most frequently observed in group 1. Ten Belgian isolates (1 from group 2, 9 from group 3) carried the methicillin resistance determinant mecA: 5 Staph. aureus from 2 different farms and 5 NAS from 3 different farms. Almost all Staph. aureus isolates were positive for at least 3 of the screened virulence genes, whereas, in total, only 8 NAS isolates harbored any of the same genes. Our study contributes to the continuous need for knowledge regarding staphylococci from food-producing animals as a basis for better understanding of occurrence of resistance and virulence traits in these bacteria.  相似文献   

5.
Pulsed-field gel electrophoresis (PFGE) after SmaI digestion was used to investigate the persistence of specific genotypes of bovine mammary gland isolates of Staphylococcus aureus on 3 dairy herds. A total of 341 isolates of Staph. aureus were available from cows in 3 herds, collected over a period of 15 yr. Pulsed-field gel electrophoresis band patterns of Staph. aureus isolates were analyzed visually and with gel analysis and comparison software. Based on this analysis, isolates were classified by PFGE type. Persistence was determined as the time period from the first to the last isolation of a particular PFGE type of Staph. aureus within a herd. Specific types of mastitis-causing Staph. aureus persisted long-term on these dairies. For example, PFGE type 3 isolates persisted on farms A, B, and C for 15, 15, and 13 yr, respectively. Type 6 was found to persist for 13 yr on farm C. Despite the application of standard mastitis control practices, mastitis-causing Staph. aureus types appeared to persist long-term, as detected by PFGE, and were isolated coincident with herd problems of increased milk somatic cell counts and decreased milk production.  相似文献   

6.
Staphylococcus aureus is a major cause of mastitis in dairy cattle. This study estimated the herd prevalence of methicillin-resistant Staph. aureus (MRSA) among US dairy herds by testing bulk tank milk (BTM) samples using genotypic and phenotypic methods. A nationally representative sample of 542 operations had BTM cultured for Staph. aureus, and 218 BTM samples were positive upon initial culture. After 4 wk to 4 mo of frozen storage, 87% of 218 samples (n = 190) were still culture positive for Staph. aureus on blood agar, but none were positive for MRSA on the selective indicator medium CHROMagar MRSA. A duplex PCR was used to detect the Staph. aureus-specific nuc gene and the methicillin resistance gene, mecA, in mixed staphylococcal isolates from the 190 BTM samples that were positive for Staph. aureus after storage. Seven samples tested positive for nuc and mecA, and 2 samples tested positive for mecA only. MecA-positive Staphylococcus spp., but not MRSA, were subsequently isolated from 5 samples, whereas neither mecA-positive Staphylococcus spp. nor MRSA was isolated from the remaining 4 samples. Presence of methicillin-resistant, coagulase-negative Staphylococcus spp. may complicate the detection of MRSA by means of PCR on BTM. Bulk tank milk in the United States is not a common source of MRSA.  相似文献   

7.
The objective of this study was to characterize Staphylococcus aureus isolates from Swiss raw milk cheeses that had been found to be contaminated with coagulase-positive staphylococci and to estimate the frequency of the various genotypes, in particular the mastitis-associated Staph. aureus genotype B (GTB). The isolates were also tested for staphylococcal enterotoxin (SE) genes and other virulence factors. From 623 coagulase-positive staphylococci isolated from 78 contaminated raw milk cheeses, 609 were found to be Staphylococcus aureus. Genotyping of all Staph. aureus isolates was performed by PCR amplification of the 16S–23S rRNA intergenic spacer region, as this method was used previously to differentiate between mastitis subtypes associated with their clinical outcome. In total, 20 different genotypes were obtained and the 5 most frequently occurring genotypes were distributed in 6.4% or more of the samples. The enterotoxin-producing Staph. aureus GTB, known for its high contagiousness and increased pathogenicity in Swiss mastitis herds, was found to be the most abundant subtype at the sample level (71.8%) as well as among the isolates (62.0%). A subset of 107 isolates of the different genotypes were analyzed for the presence of SE genes and revealed 9 different SE gene patterns, with sed being most frequently detected and 26% being PCR-negative for SE genes. Almost all isolates of the major contaminant GTB contained the SE gene pattern sed, sej, ser, with half of them additionally carrying sea. Production of SE in vitro was consistent with the SE genes detected in most of the cases; however, some isolated GTB did not produce SEA. Staphylococcus aureus Protein A (spa) typing revealed 30 different subtypes and most GTB isolates belonged to the bovine spa type t2953; GTB/t2953 was linked among other subtypes to SE production in cheese and staphylococcal intoxication cases. Furthermore, 1 of the 623 isolates was a methicillin-resistant Staph. aureus, which was an seh-carrying Staph. aureus spa type tbl 0635 (non-GTB). We conclude that control and reduction of enterotoxigenic Staph. aureus GTB in dairy herds in Switzerland will not only prevent economic losses at the farm level but also improve the safety of raw milk cheeses; distribution of methicillin-resistant Staph. aureus via raw milk cheese is of less concern.  相似文献   

8.
Bovine mastitis undermines udder health, jeopardizes milk production, and entails prohibitive costs, estimated at $2 billion per year in the dairy industry of the United States. Despite intensive research, the dairy industry has not managed to eradicate the 3 major bovine mastitis-inducing pathogens: Staphylococcus aureus, Streptococcus uberis, and Escherichia coli. In this study, the antimicrobial efficacy of a newly formulated biphenomycin compound (AIC102827) was assessed against intramammary Staph. aureus, Strep. uberis, and E. coli infections, using an experimental mouse mastitis model. Based on its effective and protective doses, AIC102827 applied into the mammary gland was most efficient to treat Staph. aureus, but also adequately reduced growth of Strep. uberis or E. coli, indicating its potential as a broad-spectrum candidate to treat staphylococcal, streptococcal, and coliform mastitis in dairy cattle.  相似文献   

9.
Staphylococcus aureus is one of the most frequent pathogens causing intramammary infections in dairy herds. Consequently, virulence factors, pathobiology, and epidemiology of Staphylococcus aureus strains have been widely assessed through the years. Nevertheless, not much has been described about the epidemiology of Staph. aureus strains from bulk tank milk (BTM) and adherences on milking equipment (AMES), even when these strains may play a role in the quality of milk that is intended for human consumption. The objective of this study was to assess the strain diversity of 166 Staph. aureus isolates collected from 3 consecutive BTM samples, and from AMES in contact with milk from 23 Chilean dairy farms. Isolates were analyzed and typed using pulsed-field gel electrophoresis. Diversity of strains, both within and among farms, was assessed using Simpson's index of diversity (SID). On farms where Staph. aureus was isolated from both AMES and BTM (n = 8), pulsotypes were further analyzed to evaluate the role of AMES as a potential source of Staph. aureus strains in BTM. Among all Staph. aureus analyzed by pulsed-field gel electrophoresis, a total of 42 pulsotypes (19 main pulsotypes and 23 subtypes) were identified. Among dairy farms, strain diversity was highly heterogeneous (SID = 0.99). Within dairy farms, Staph. aureus strain diversity was variable (SID = 0 to 1), and 18 dairy operations (81.8%) had one pulsotype that was shared between at least 2 successive BTM samples. In those farms where Staph. aureus was isolated in both AMES and BTM (n = 8), 7 (87.5%) showed a clonal distribution of Staph. aureus strains between these 2 types of samples. The overlapping of certain Staph. aureus strains among dairy farms may point out common sources of Staph. aureus among otherwise epidemiologically unrelated farms. Indistinguishable Staph. aureus strains between AMES and BTM across dairy farms suggest that Staph. aureus–containing AMES may represent a source for BTM contamination, thus affecting milk quality. Our study highlights the role of viable Staph. aureus in AMES as a source for BTM contamination on dairy farms, and also describes the overlapping and presence of specific BTM and AMES pulsotypes among farms.  相似文献   

10.
Staphylococcus aureus is one of the main pathogens involved in dairy cow mastitis. Monitoring of antibiotic use would prove useful to assess the risk of Staph. aureus in raw milk. The objective of this work was to investigate the prevalence of Staph. aureus strais isolated from raw milk in northern China, and to characterize antimicrobial susceptibility of these strains and their key virulence genes. In total, 195 raw milk samples were collected from 195 dairy farms located in 4 cities of northern China from May to September 2015. Out of 195 samples, 54 (27.7%) were positive for Staph. aureus. Among these 54 samples, 54 strains of Staph. aureus were isolated, and 16 strains were identified as methicillin-resistant Staph. aureus. The strains exhibited high percentages of resistance to penicillin G (85.2%), ampicillin (79.6%), and erythromycin (46.3%). Moreover, 72% of the strains showed resistance to more than one antimicrobial agent. Overall, 63% of penicillin-resistant strains possessed the blaZ gene, and 60% of the erythromycin-resistant strains possessed erm(A), erm(B), erm(C), msr(A), or msr(B) genes with 8 different gene patterns. All isolates resistant to gentamicin, kanamycin, and oxacillin carried the aac6'-aph2”, ant(4')-Ia, and mecA genes, respectively. Two tet(M)-positive isolates carried specific genes of the Tn916-Tn1545 transposon. The most predominant virulence genes were sec, sea, and pvl, which encode staphylococcal enterotoxins (sec and sea) and Panton-Valentine leukocidin, respectively. Thirty-two isolates (59.2%) harbored one or more virulence genes. The majority of Staph. aureus strains were multidrug resistant and carried multiple virulence genes, which may pose a risk to public health. Our data indicated that antimicrobial resistance of Staph. aureus was prevalent in dairy herds in northern China, and that antibiotics, especially penicillin G and ampicillin, to treat mastitis caused by Staph. aureus should be used with caution in northern China.  相似文献   

11.
Staphylococcus aureus is one of the major etiological agents of bovine mastitis, harboring a wide variety of staphylococcal superantigen (SAg) toxin genes. The SAg toxin genes are reported to be closely associated with the pathogenicity of the Staph. aureus causing the bovine mastitis. This study was conducted to investigate SAg toxin gene profiles and to assess the relationships among SAg toxin genes, genotypes of Staph. aureus, and their pathogenic properties. A total of 327 quarter milk samples were collected from bovine mastitis cases for isolation and identification of pathogens. In total, 35 isolates were identified as Staph. aureus, and the prevalence of Staph. aureus in milk samples was 13.6% (35/256). Polymerase chain reaction (PCR) and randomly amplified polymorphic DNA (RAPD) assays were used to detect the SAg toxin genes and to genotype Staph. aureus strains isolated from milk samples of bovine mastitis in 10 dairy herds located in Ningxia, China, respectively. The results showed that among the Staph. aureus isolates (n = 35), 71.4% (n = 25) of isolates carried at least one SAg toxin gene. In total, 18 SAg genes and 21 different gene combination patterns were detected among these isolates. The most common SAg genes in Staph. aureus isolates were sei, sen, and seu (44.0% each), followed by seo, tst, and etB (28.0% each), etA (24.0%), sem and sep (16.0% each), seb, sec, sed, and sek (12.0% each), and sea and seh genes (8.0% each); the seg, sej, and ser genes were present in 4.0% of the isolates. Three gene combinations were found to be related to mobile genetic elements that carried 2 or more genes. The egc-cluster of the seg-sei-sem-sen-seo genes, located on the pathogenicity island Type I υSaβ, was detected in 16% of isolates. Interestingly, we observed 6 RAPD genotypes (I to VI) in Staph. aureus isolates, and 2 of these genotypes were strongly associated with the severity of bovine mastitis; there was a close relationship between the RAPD genotypes and SAg genes. Isolates of RAPD type III were more frequently associated with clinical and subclinical mastitis, whereas strains of type VI were mostly related to subclinical mastitis. In addition, SAg genes were related to severity of bovine mastitis. We conclude that an obvious relationship exists among RAPD genotypes, SAg toxin genes, and severity of bovine mastitis.  相似文献   

12.
Cows are probably the main source of contamination of raw milk with Staphylococcus aureus. Mammary glands with subclinical mastitis can shed large numbers of Staph. aureus in milk. Because of the risk of this pathogen to human health as well as animal health, the aim of this paper was to describe an outbreak of mastitis caused by methicillin-resistant Staph. aureus (MRSA), oxacillin-susceptible mecA-positive Staph. aureus (OS-MRSA), and methicillin-susceptible Staph. aureus (MSSA) on a dairy farm. Milk samples were obtained from all quarters, showing an elevated somatic cell count by the California Mastitis Test. The isolates were identified by phenotypic and genotypic methods. Staphylococcus spp. were isolated from 53% (61/115) of the milk samples, with 60 isolates identified as Staph. aureus (98.4%) and 1 isolate identified as Staphylococcus epidermidis (1.6%). The presence of the mecA gene was verified in 48.3% of Staph. aureus isolates. Of the Staph. aureus isolates, 23.3% were MRSA and 25.0% were OS-MRSA. The total of mastitis cases infected with MRSA was 12.2%. The detection of this large percentage of mastitis cases caused by MRSA and OS-MRSA is of great concern for the animals’ health, because β-lactams are still the most important antimicrobials used to treat mastitis. In addition, Staph. aureus isolates causing bovine mastitis represent a public health risk.  相似文献   

13.
Staphylococcus aureus is the predominant causative agent of bovine mastitis, a disease that remains a major economic burden for the dairy industry worldwide. In this study, the antimicrobial resistance patterns and the genetic composition of 80 S. aureus mastitis isolates collected from 14 dairy farms in Eastern Poland were determined. Of the 10 antimicrobial agents evaluated, only testing for penicillin G produced drug resistance. As 41% of the S. aureus isolates were penicillin resistant, this drug along with other β-lactamase-sensitive β-lactams, should rather not be considered for the treatment of bovine mastitis caused by S. aureus. Upon genotyping, with a triplex PCR method, a total of 11 distinct PCR types were produced. The population structure of S. aureus isolates was highly clonal, with 1 predominant genotype circulating on each farm. The observed similarities in the genotype composition of S. aureus populations from geographically distant farms underscore the significance of interfarm transmission of S. aureus in Poland. This, in turn, argues for the establishment of a nationwide surveillance program for bovine mastitis due to this pathogen.  相似文献   

14.
Mastitis is an important disease for the dairy industry worldwide, causing economic losses and reducing milk quality and production. Staphylococcus aureus is a worldwide agent of this intramammary infection, which also causes foodborne diseases. The objective of this study was to determine the frequency of methicillin-susceptible Staphylococcus aureus (MSSA) isolates in milk of mastitis cows in Brazil and to analyze the genetic lineages and the content of antimicrobial resistance genes and virulence factors among these isolates. Fifty-six MSSA isolates were recovered from 1,484 milk samples (positive for the California mastitis test) of 518 cows from 11 different farms in Brazil (representing 51% of total Staph. aureus obtained), and they were further characterized. Methicillin-susceptible Staphylococcus aureus were isolated from 3.7% of California mastitis test-positive tested milk samples and from 6.2% of tested mastitic cows. Methicillin-susceptible Staphylococcus aureus isolates were characterized by spa typing, agr typing, and multilocus sequence typing, and resistance and virulence traits were investigated by PCR. Seven spa types were identified among MSSA (% of isolates): t127 (44.6), t605 (37.5), t002, t1784, t2066 (1.8), and 2 new ones: t10856 (10.7) and t10852 (1.8). Five distinct sequence types (ST) were detected (% of isolates): ST1 (46.4), ST126 (37.5), ST133 (10.7), ST5 (3.6), and a novel ST registered as ST2493 (1.8). Resistances were detected for streptomycin, chloramphenicol, and tetracycline. One strain contained the chloramphenicol resistance gene (fexA; included within transposon Tn558) and 3 strains contained the tetracycline resistance gene [tet(K)]. Methicillin-susceptible Staphylococcus aureus strains were susceptible to most of the antibiotics studied and lacked the virulence genes of Panton-Valentine leukocidin (lukF/S-PV), toxic shock syndrome toxin 1 (tst), exfoliative toxin A (eta), and exfoliative toxin B (etb), as well as the genes of the immune evasion cluster. Methicillin-susceptible Staphylococcus aureus isolates were detected in a relatively low proportion of cows with mastitis (6.2%) and recovered isolates presented high diversity of genetic lineages, with CC1 and CC126 the predominant clonal complexes, and CC133 also being detected. Larger epidemiological studies with molecular characterization of isolates are required to deepen the knowledge on the circulating genetic lineages among the cow population with mastitis.  相似文献   

15.
In heifers, intramammary infections caused by Staphylococcus aureus affect milk production and udder health in the first and subsequent lactations, and can lead to premature culling. Not much is known about Staph. aureus isolated from heifers and it is also unclear whether or not these strains are readily transmitted between heifers and lactating herd mates. In this study, we compared phenotypic characteristics, spa types, and DNA microarray virulence and resistance gene profiles of Staph. aureus isolates obtained from colostrum samples of dairy heifers with isolates obtained from lactating cows. Our objective was to (1) characterize Staph. aureus strains associated with mastitis in heifers and (2) determine relatedness of Staph. aureus strains from heifers and lactating cows to provide data on transmission. We analyzed colostrum samples of 501 heifers and milk samples of 68 lactating cows within the same herd, isolating 48 and 9 Staph. aureus isolates, respectively. Staphylococcus aureus strains from heifers, lactating herd mates, and an unrelated collection of 78 strains from bovine mastitis milk of mature cows were compared. With 1 exception each, characterization of all strains from heifers and lactating cows in the same herd yielded highly similar phenotypic and genotypic results. The strains were Staphaurex latex agglutination test negative (Oxoid AG, Basel, Switzerland) and belonged to agr type II, CC705, and spa types tbl 2645 and t12926. They were susceptible to all antimicrobial agents tested. In contrast, the strains from mature cows in other herds were spread across different clonal complexes, spa types, and SplitsTree clusters (http://www.splitstree.org/), thus displaying a far higher degree of heterogeneity. We conclude that strains isolated from colostrum of heifers and mastitis milk of lactating cows in the same herd feature highly similar phenotypic and genomic characteristics, suggesting persistence of the organism during the first and potentially subsequent lactations or transmission between heifers and mature herd mates.  相似文献   

16.
Bovine mastitis is a frequent problem in Swiss dairy herds. One of the main pathogens causing significant economic loss is Staphylococcus aureus. Various Staph. aureus genotypes with different biological properties have been described. Genotype B (GTB) of Staph. aureus was identified as the most contagious and one of the most prevalent strains in Switzerland. The aim of this study was to identify risk factors associated with the herd-level presence of Staph. aureus GTB and Staph. aureus non-GTB in Swiss dairy herds with an elevated yield-corrected herd somatic cell count (YCHSCC). One hundred dairy herds with a mean YCHSCC between 200,000 and 300,000 cells/mL in 2010 were recruited and each farm was visited once during milking. A standardized protocol investigating demography, mastitis management, cow husbandry, milking system, and milking routine was completed during the visit. A bulk tank milk (BTM) sample was analyzed by real-time PCR for the presence of Staph. aureus GTB to classify the herds into 2 groups: Staph. aureus GTB-positive and Staph. aureus GTB-negative. Moreover, quarter milk samples were aseptically collected for bacteriological culture from cows with a somatic cell count ≥150,000 cells/mL on the last test-day before the visit. The culture results allowed us to allocate the Staph. aureus GTB-negative farms to Staph. aureus non-GTB and Staph. aureus-free groups. Multivariable multinomial logistic regression models were built to identify risk factors associated with the herd-level presence of Staph. aureus GTB and Staph. aureus non-GTB. The prevalence of Staph. aureus GTB herds was 16% (n = 16), whereas that of Staph. aureus non-GTB herds was 38% (n = 38). Herds that sent lactating cows to seasonal communal pastures had significantly higher odds of being infected with Staph. aureus GTB (odds ratio: 10.2, 95% CI: 1.9–56.6), compared with herds without communal pasturing. Herds that purchased heifers had significantly higher odds of being infected with Staph. aureus GTB (rather than Staph. aureus non-GTB) compared with herds without purchase of heifers. Furthermore, herds that did not use udder ointment as supportive therapy for acute mastitis had significantly higher odds of being infected with Staph. aureus GTB (odds ratio: 8.5, 95% CI: 1.6–58.4) or Staph. aureus non-GTB (odds ratio: 6.1, 95% CI: 1.3–27.8) than herds that used udder ointment occasionally or regularly. Herds in which the milker performed unrelated activities during milking had significantly higher odds of being infected with Staph. aureus GTB (rather than Staph. aureus non-GTB) compared with herds in which the milker did not perform unrelated activities at milking. Awareness of 4 potential risk factors identified in this study guides implementation of intervention strategies to improve udder health in both Staph. aureus GTB and Staph. aureus non-GTB herds.  相似文献   

17.
Staphylococcus aureus is a common udder pathogen of dairy cows that often causes herd problems. Various mastitis control programs have been used to combat the problem but have not always been efficient in preventing new Staph. aureus infections, indicating the presence of possible sources of infection other than those traditionally considered. Therefore, the aim of the study was to identify potential sources of infection relevant for Staph. aureus mastitis within 5 dairy herds with udder health problems caused by Staph. aureus. Samples were collected from milk of lactating cows, from body sites, and from the environment of lactating cows, dry cows, late pregnant heifers, young heifers 4 to 12 mo old, and heifer calves 0 to 3 mo old. Isolates of Staph. aureus were identified and compared using pulsed-field gel electrophoresis. Four to 7 unique Staph. aureus pulsotypes were found within each herd, with one strain predominating in milk in each herd. The milk pulsotypes were also frequently isolated in body samples, especially on hock skin, and in the immediate environment of lactating cows, and were sometimes found in other animal groups, especially in dry cows and heifer calves 0 to 3 mo old. The prevalence of Staph. aureus in milk and other types of samples varied markedly between herds. Staphylococcus aureus isolates with genotypes indistinguishable from those found in milk also dominated in extra-mammary sites within the dairy herds studied, and hock skin was identified as an important reservoir of Staph. aureus. The results contribute new knowledge necessary to improve strategies for udder health control in herds.  相似文献   

18.
Staphylococcus aureus is a highly contagious mastitis-causing pathogen infecting dairy cattle worldwide. Previous studies have shown the presence of different genotypes (GT) on farms. In Switzerland, Staph. aureus genotype B (GTB) is contagious, whereas GTC and other genotypes cause sporadic, noncontagious mastitis. In this study, we evaluated the epidemiological properties of Staph. aureus, together with its genotypes and spa types, on Swiss dairy farms. A total of 21 dairy farms were sampled throughout Switzerland; 10 farms were positive for the contagious Staph. aureus GTB and 11 farms were negative for GTB. Samples were taken from milk, body surfaces of dairy cattle and other animals, milkers, milking equipment, and environmental sites (e.g., parlor, washing room, stall floor, manger, and bedding). The epidemiology of Staph. aureus depended markedly on the genotype. Staphylococcus aureus GTB was associated with mammary gland, intramammary infections (IMI), and milking clusters, whereas GTC and other genotypes were related to cow and other animal surfaces and occasionally to environment. Genotype C was by far the most common subtype in cattle and was found on GTB-negative and GTB-positive farms. Each farm had a predominant genotype, such as GTB, GTC, GTA, or GTF, but a few farms were almost free from Staph. aureus. The genotypes and spa types of Staph. aureus detected in the noses of milkers clearly differed from those found in dairy cattle, other animals, milking equipment, and the environment. Exceptions were GTS (spa type t034) and GTF (t899), which crossed the species barrier. In most cases, however, the species barrier was maintained because Staph. aureus is adapted to a particular host and even to particular body sites. As biological properties differ among the genotypes, new guidelines to prevent IMI caused by different genotypes were established: classical measures to prevent IMI caused by contagious pathogens still hold for GTB but not for Staph. aureus genotypes that are opportunistic colonizers of bovine skin (e.g., GTC and GTA). For those genotypes, protection of the skin from minor lesions and wounds, particularly on the hocks, is essential.  相似文献   

19.
《Journal of dairy science》2022,105(2):1504-1518
The objectives for this study were to (1) describe the pathogen profile in quarters from cows with clinical mastitis and in cows with subclinical mastitis in southeastern Australia; and (2) describe antimicrobial susceptibility among isolated pathogens. As a secondary objective, we aimed to compare antimicrobial resistance prevalence in pathogens isolated from clinical and subclinical mastitis samples. A convenience sample of dairy herds (n = 65) from 4 regions in southeastern Australia (Gippsland, Northern Victoria, Tasmania, Western Victoria) were invited to submit milk samples from cows with clinical and subclinical mastitis over a 14-mo period (January 2011 to March 2012). Farmers were instructed to collect aseptic quarter milk samples from the first 10 cases of clinical mastitis for each month of the study. In addition, farmers submitted composite milk samples from cows with subclinical mastitis at 1 or 2 sampling occasions during the study period. Aerobic culture and biochemical tests were used to identify isolates. Isolates were classified as susceptible, intermediate, or resistant to a panel of antimicrobial agents based on the zone of growth inhibition around antimicrobial-impregnated disks, with antimicrobial resistance (AMR) classified as nonsusceptibility by combining intermediate and resistant groups into a single category. Generalized linear mixed models were used to compare the prevalence of AMR between clinical and subclinical mastitis isolates. For clinical mastitis samples (n = 3,044), 472 samples (15.5%) were excluded for contamination. Of the remaining samples (n = 2,572), the most common results were Streptococcus uberis (39.2%), no growth (27.5%), Staphylococcus aureus (10.6%), Escherichia coli (8.4%), and Streptococcus dysgalactiae (6.4%). For subclinical mastitis samples (n = 1,072), 425 (39.6%) were excluded due to contamination. Of the remaining samples (n = 647), the most common results were no growth (29.1%), Staph. aureus (29.1%), and Strep. uberis (21.6%). The prevalence of AMR among common isolates was low for the majority of antimicrobial agents. Exploratory analysis found that the probability of Staph. aureus demonstrating resistance to penicillin was 5.16 times higher (95% confidence interval: 1.68, 15.88) in subclinical isolates relative to clinical Staph. aureus isolates. A similar association was observed for amoxicillin with subclinical Staph. aureus isolates being 4.70 times (95% confidence interval: 1.49, 14.75) more likely to be resistant than clinical Staph. aureus isolates. We concluded that the most common bacteria causing clinical mastitis in dairy herds in Australia is likely to be Strep. uberis, whereas Staph. aureus is likely to be the most common cause of subclinical mastitis. Despite decades of antimicrobial use to control these organisms, AMR appears to be uncommon.  相似文献   

20.
The prevalence of antimicrobial resistance (AMR) is increasing in human and animal pathogens, becoming a concern worldwide. However, prevalence and characteristics of AMR of bovine mastitis pathogens in large Chinese dairy herds are still unclear. Therefore, our objective was to determine the AMR profile of bacteria isolated from clinical mastitis in large (>500 cows) Chinese dairy herds. A total of 541 isolates of the 5 most common species, Staphylococcus aureus (n = 103), non-aureus staphylococci (NAS; n = 107), Streptococcus species (n = 101), Klebsiella species (n = 130), and Escherichia coli (n = 100), isolated from bovine clinical mastitis on 45 dairy farms located in 10 provinces of China were included. Presence of AMR was determined by minimum inhibitory concentrations using the microdilution method. Prevalence of multidrug resistance (resistance to >2 antimicrobials) was 27% (148/541). A very wide distribution of minimum inhibitory concentrations was screened in all isolates, including Staph. aureus isolates, which were resistant to penicillin (66%). In addition, NAS (30%) were more resistant than Staph. aureus to oxacillin (84%), penicillin (62%), tetracycline (34%), and clindamycin (33%). Prevalence of resistance to tetracycline was high (59%) in Streptococcus spp. Additionally, prevalence of resistance of both E. coli and Klebsiella spp. was high to amoxicillin/clavulanate potassium (81 and 38%, respectively), followed by tetracycline (only Klebsiella spp. 32%). A high proportion (27%) of isolates were multidrug resistant; the most frequent combinations were clindamycin-cefalexin-tetracycline or enrofloxacin-cefalexin-penicillin patterns for Staph. aureus; enrofloxacin-oxacillin-penicillin-tetracycline patterns for NAS; clindamycin-enrofloxacin-tetracycline patterns for Streptococcus spp.; amoxicillin/clavulanate potassium-ceftiofur-polymyxin B patterns for Klebsiella spp.; and amoxicillin/clavulanate potassium-ceftiofur-polymyxin B patterns for E. coli. Resistance for 4 kinds of antimicrobials highly critical for human medicine, including daptomycin, vancomycin, imipenem, and polymyxin B, ranged from 0 to 24%. In conclusion, prevalence of AMR in mastitis pathogens was high on large Chinese dairy farms, potentially jeopardizing both antimicrobial efficacy and public health. Results of this study highlighted the need for improvements in antimicrobial stewardship and infection control programs in large Chinese dairy farms to reduce emergence of AMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号