首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
高热流条件下过冷沸腾流动阻力特性试验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
过冷沸腾在高热流冷却场合得到了广泛的应用,如聚变堆偏滤器冷却、压水堆堆芯冷却。其中,过冷沸腾流动阻力是换热系统设计的关键内容之一。试验研究了高热流条件下竖直通道内水的过冷沸腾流动阻力特性,试验段为内径6 mm、长径比44.4的不锈钢圆管。试验参数范围:热通量7.5~12.5 MW/m2,质量流速6000~10000 kg/(m2?s),系统压力3~5 MPa,进口流体温度80~200℃。分析了质量流速、热通量、压力、沸腾数、Jacob数等参数对阻力的影响。结果显示,过冷沸腾流动阻力随着热流及质量流速的增加而增加,随压力增加而减小。将试验数据与文献中的经验关联式作对比,结果表明各关联式的预测误差较大,主要归结于拟合参数及工作流体的差异。研究发现管径尺寸效应也是影响阻力的一个因素,为此在前期成果的基础上,提出了一个添加管径因素修正项的经验关联式,该关联式的预测误差在±18%范围内。  相似文献   

2.
实验探究了微小圆管内(内径1 mm)过冷水流动沸腾的阻力特性,参数范围:热通量4.0~5.6 MW/m2,压力3.0~5.0 MPa,质量流速2000~4200 kg/(m2 s),进口热力学干度-0.50~-0.10。获取了质量流速、压力、热通量等参数对过冷沸腾阻力的影响,并重点关注其预测方法。将测试数据与典型阻力关联式对比,结果表明,由于高热流、微通道等特殊因素,导致大部分阻力关联式的预测精度不够理想。为更准确预测高热流过冷沸腾阻力,基于LeakyReLU函数,建立了遗传算法优化的极限学习机模型(GA-ELM),其预测精度优于传统关联式(平均绝对误差为2.0%),且泛化性良好。研究工作可为微小尺度流动换热系统设计优化提供支撑。  相似文献   

3.
对超临界二氧化碳在圆管内流动时的压降和摩擦系数进行了实验研究。实验段长为2000 mm,内径为10mm。该实验压力范围为8~16MPa,质量流量范围为1000~1525kg·m~(-2)·s-1,内壁热通量范围为96.5~283.2kW·m~(-2)。得到了不同工况下竖直圆管内流动阻力的变化规律,分析了压力、质量流速、主流焓值和热通量对圆管内摩擦阻力的影响。实验结果表明摩擦压降随着质量流量和压力的增加而显著增加,特别是当主流焓值超过拟临界焓值后,其增加的速度变得更加剧烈,同时发现热通量对摩擦压降的影响较小。对于预测常物性摩擦因子的经验关联式并不能预测超临界CO_2的摩擦因子。因此提出了一个新的经验关联式,其实验数据在±20%误差范围内占83.31%。  相似文献   

4.
在系统压力P=412~850 k Pa,过冷度?Tsub=4.7~15.0℃,热通量q"=0.11~10.90 k W·m~(-2),质量流量G=147.5~443.7 kg·m~(-2)·s-1的条件下,对立式和卧式螺旋管内R134a过冷流动沸腾起始点特性进行了实验研究。研究结果表明:当实验系统参数相同时,立式和卧式螺旋管内过冷沸腾起始点的热通量基本相同,但是立式螺旋管内过冷沸腾起始点壁面过热度小于卧式螺旋管;过冷沸腾起始点的热通量、壁面过热度随着过冷度和质量流量的增大而增大,但随着压力、螺旋直径的增大而减小。通过无量纲分析对实验数据进行非线性拟合,发展了适用于螺旋管过冷沸腾起始点的关联式。  相似文献   

5.
在系统压力P=412~850 kPa,过冷度△Tsub=4.7~15.0℃,热通量q"=0.11~10.90 kW·m-2,质量流量G=147.5~443.7 kg·m-2·s-1的条件下,对立式和卧式螺旋管内R134a过冷流动沸腾起始点特性进行了实验研究。研究结果表明:当实验系统参数相同时,立式和卧式螺旋管内过冷沸腾起始点的热通量基本相同,但是立式螺旋管内过冷沸腾起始点壁面过热度小于卧式螺旋管;过冷沸腾起始点的热通量、壁面过热度随着过冷度和质量流量的增大而增大,但随着压力、螺旋直径的增大而减小。通过无量纲分析对实验数据进行非线性拟合,发展了适用于螺旋管过冷沸腾起始点的关联式。  相似文献   

6.
以去离子水为工质,在质量流速G为96~224 kg·m~(-2)·s~(-1),入口过冷度为20~50℃,有效热通量为10~240W·cm~(-2)的范围内,对圆形、菱形、椭圆形微肋阵通道内流动沸腾临界热通量(critical heat flux,CHF)特性进行了实验研究。临界热通量是通道出口壁面干涸造成的,而出口壁面的干涸是由于流动沸腾向通道上游的反向流动。出口壁温的剧增和两相压降的剧减标志着CHF的发生。此外研究发现质量流速、入口过冷度、微肋形状等实验参数对CHF也有着很大的影响。实验结果表明:在相同的实验工况条件下,微肋片的存在大大减小了沸腾的反向流动和流动沸腾的不稳定性,微肋阵通道的CHF比光滑微通道更高,且椭圆形微肋阵的CHF最大,菱形微肋阵次之,圆形微肋阵最小;CHF随着质量流速和入口过冷度的增大而增大,但随着出口干度的增大而减小。最后将实验数据文献中的关联式进行了比较验证,结果表明该实验数据与关联式吻合良好。  相似文献   

7.
微肋阵通道内流动沸腾CHF特性   总被引:3,自引:2,他引:1       下载免费PDF全文
以去离子水为工质,在质量流速G为96~224 kg·m-2·s-1,入口过冷度为20~50℃,有效热通量为10~240 W·cm-2的范围内,对圆形、菱形、椭圆形微肋阵通道内流动沸腾临界热通量(critical heat flux,CHF)特性进行了实验研究。临界热通量是通道出口壁面干涸造成的,而出口壁面的干涸是由于流动沸腾向通道上游的反向流动。出口壁温的剧增和两相压降的剧减标志着CHF的发生。此外研究发现质量流速、入口过冷度、微肋形状等实验参数对CHF也有着很大的影响。实验结果表明:在相同的实验工况条件下,微肋片的存在大大减小了沸腾的反向流动和流动沸腾的不稳定性,微肋阵通道的CHF比光滑微通道更高,且椭圆形微肋阵的CHF最大,菱形微肋阵次之,圆形微肋阵最小;CHF随着质量流速和入口过冷度的增大而增大,但随着出口干度的增大而减小。最后将实验数据文献中的关联式进行了比较验证,结果表明该实验数据与关联式吻合良好。  相似文献   

8.
对超临界二氧化碳在圆管内流动时的压降和摩擦系数进行了实验研究。实验段长为2000 mm,内径为10 mm。该实验压力范围为8~16 MPa,质量流量范围为1000~1525 kg·m-2·s-1,内壁热通量范围为96.5~283.2 kW·m-2。得到了不同工况下竖直圆管内流动阻力的变化规律,分析了压力、质量流速、主流焓值和热通量对圆管内摩擦阻力的影响。实验结果表明摩擦压降随着质量流量和压力的增加而显著增加,特别是当主流焓值超过拟临界焓值后,其增加的速度变得更加剧烈,同时发现热通量对摩擦压降的影响较小。对于预测常物性摩擦因子的经验关联式并不能预测超临界CO2的摩擦因子。因此提出了一个新的经验关联式,其实验数据在±20%误差范围内占83.31%。  相似文献   

9.
《化学工程》2021,49(5)
新型制冷剂R1234yf作为R134a的替代制冷剂在车用热泵制冷剂研究领域受到关注。为对比研究R1234yf与R134a在小管径换热器中的流动沸腾换热特性,在内径为4 mm水平圆铜管内进行相关实验。实验研究工况:饱和温度10℃,平均干度范围0—1,质量速度范围300—450 kg/(m~2·s),热通量范围10—25 kW/m~2。研究结果表明:工质R134a与R1234yf在管内沸腾换热系数均随质量速度和热通量的增加而增加,随平均干度的增加呈先增加后降低的趋势;相同工况下R134a的沸腾换热系数比R1234yf高8%—21%,干度较低时沸腾换热系数相差较小;换热系数预测关联式偏差验证结果显示,Kim和Mudawar关联式对R134a的预测精度较高,Liu和Winterton关联式更适用于R1234yf的换热系数预测。  相似文献   

10.
为获取高热流、低流速条件下超临界CO_2的传热规律,开展了超临界CO_2在内径2 mm水平小圆管内对流传热试验研究,并重点探讨了变物性、浮升力和热加速等效应对传热过程的影响。试验参数范围:系统压力7.6~8.4 MPa,质量流速400~500 kg/(m~2?s),热通量0~200 kW/m~2,流体温度20~60℃,Reynolds数1.2×10~4~4.3×10~4。分别采用Gr/Re~2和Kv作为浮升力效应和热加速效应的判别因子。结果显示,在高热流低流速工况下,浮升力效应显著(Gr/Re~210~(-3)),同一个截面处的上壁面传热系数始终小于下壁面传热系数。浮升力效应是高热流低流速工况下传热恶化的主要诱发因素。试验中热加速因子较小(Kv8.5×10~(-7)),其效应可以忽略。将试验数据与典型的传热经验关联式作对比,结果表明Liao-Zhao关联式的计算结果与试验结果最吻合。  相似文献   

11.
对R41和混合工质CO2/R41 (20.5/79.5)、CO2/R41(51.4/48.6)在直径为2 mm的水平光滑圆管中的超临界冷却流动换热特性进行了实验研究。质量流速范围为400~800 kg·m-2·s-1,压力为6.0~8.0 MPa,热通量为12~48 kW·m-2,流体温度为20~80℃。3种工质的对流传热系数的极值随CO2含量的增加而增大,在相同条件下R41的传热系数小于CO2/R41的传热系数。混合物的超临界传热系数变化规律与纯R41相同。实验条件下,3种流体的传热系数在2~25 kW·m-2·K-1之间,压力的影响显著,越接近临界压力对应压力条件下的传热系数极值越高。在远离准临界点的区域传热系数随热通量变化不明显,而在准临界点附近对流传热系数的极值随热通量的增加而小幅减小。将实验结果与经验关联式计算结果进行了比较,有4个关联式的预测效果较好,误差均在±30%以内,预测误差随CO2含量的增加而下降。  相似文献   

12.
陈东升  石玉美 《化工学报》2014,65(4):1199-1207
建立了一套实验装置用于对8 mm内径圆管内的液化天然气流动沸腾传热特性进行实验研究。测试压力为0.5 MPa,液化天然气质量流量为50~200 kg·m-2·s-1,热通量为8.0~36.0 kW·m-2。主要研究了热通量、质量流量和干度等影响因素对传热的影响。发现质量流量对传热有重大影响,液化天然气管内流动沸腾传热系数一般随质量流量的增加而增大。而热通量对传热的影响主要体现在低干度范围内,且在质量流量较小时更为明显。而当干度小于0.5~0.6时,传热系数一般随干度的增加而增大。但当干度大于0.6时,传热系数随干度的增加显著下降。将实验结果与4种现存的混合物流动沸腾传热关联式进行比较,结果表明Zou等提出的计算关联式与实验结果最接近,计算误差约为30.2%。  相似文献   

13.
实验研究了竖直圆管内液氮流动沸腾传热特性,分析壁面温度、流体温度、干度以及传热系数沿实验段管程的变化规律,考察热通量、质量流量和入口压力对液氮两相流动传热特性的影响。针对实验工况分别采用Chen、Klimenko、Shah以及Liu-Winterton关联式对传热系数进行预测,并将实验结果与预测结果进行比较,对不同传热系数区间内的相对误差进行了计算、分析,以评估实验工况范围内各关联式的准确性。结果表明,在传热系数较大的情况下,4个关联式的预测值普遍低于实验值,在整个实验工况范围内,采用Klimenko关联式预测时误差最小。  相似文献   

14.
R290在水平光滑管内的沸腾换热   总被引:1,自引:1,他引:0       下载免费PDF全文
对内径为4、6 mm水平光滑铜管内R290的沸腾换热特性进行了实验研究,分析了质流密度、热通量、饱和温度、管径对沸腾传热系数以及临界干度的影响,选择5种适用于R290的水平光滑管内沸腾换热关联式,对实验工况下R290的沸腾传热系数进行预测,并与实验值对比。结果表明,管径越小、质流密度越大,或者饱和温度越高,则沸腾传热系数越大;在干度逐渐增大的过程中,沸腾传热系数随热通量的增大先增大后减小。热通量、管径相比质流密度、饱和温度对临界干度的影响更明显,且热通量越大,临界干度越小;管径越小,临界干度越大。5种关联式中,Fang关联式的预测能力最佳。  相似文献   

15.
对内径为4、6 mm水平光滑铜管内R290的沸腾换热特性进行了实验研究,分析了质流密度、热通量、饱和温度、管径对沸腾传热系数以及临界干度的影响,选择5种适用于R290的水平光滑管内沸腾换热关联式,对实验工况下R290的沸腾传热系数进行预测,并与实验值对比。结果表明,管径越小、质流密度越大,或者饱和温度越高,则沸腾传热系数越大;在干度逐渐增大的过程中,沸腾传热系数随热通量的增大先增大后减小。热通量、管径相比质流密度、饱和温度对临界干度的影响更明显,且热通量越大,临界干度越小;管径越小,临界干度越大。5种关联式中,Fang关联式的预测能力最佳。  相似文献   

16.
匡以武  孙礼杰  王文  耑锐  张亮 《化工学报》2021,72(Z1):184-193
基于双流体模型,建立了液氢管内流动沸腾的数值模型,在液体Reynolds数67000~660000、壁面热通量16300~317800 W/m2、饱和温度22~29 K、入口过冷度0~8 K的范围内,对管径5.95和6.35 mm的圆管内液氢流动沸腾开展了数值模拟研究,并与试验结果进行了对比。对比显示,液氢流动沸腾传热系数的模拟结果与试验数据的平均误差(MAE)为7.79%,94%的模拟数据都在±20%误差带范围内。  相似文献   

17.
在压力为7.5~21 MPa,热通量为50~413 kW·m~(-2),质量流速为519~1500 kg·m~(-2)·s~(-1)的实验参数范围内,对超临界CO_2在内径为10.0 mm的垂直上升管内的流动传热特性进行了均匀加热条件实验研究。分析了热通量、压力和浮升力对圆管内传热特性的影响规律。实验结果表明:随着热通量的增加,传热出现恶化现象,并且随着热通量的增加壁温峰值点向入口段移动。传热恶化发生在流体温度小于拟临界温度而壁面温度大于拟临界温度附近。增大压力时由于物性的变化趋于平缓,传热恶化被抑制。当传热恶化发生时,浮升力对传热恶化有明显的影响。基于实验数据,综合考虑物性变化和浮升力对传热的影响,建立了新的超临界二氧化碳传热关联式,在实验工况范围内,预测值与实验值的平均偏差和标准差分别为1.2%和16.29%。  相似文献   

18.
在压力9~22 MPa,质量流速450~2000 kg·m?2·s?1,内壁热负荷200~700 kW·m?2的参数范围内,试验研究了用于1000 MW超超临界锅炉??28.6 mm×5.8 mm垂直上升内螺纹水冷壁管内汽水流动沸腾传热。研究表明:内螺纹管内壁螺纹的漩流作用可抑制偏离核态沸腾(DNB)传热恶化,内螺纹管在高干度区发生蒸干型(DO)传热恶化。增大质量流速可推迟壁温飞升,壁温飞升幅度随质量流速增大而降低。热负荷越大管壁温越高,随热负荷增大管壁壁温飞升提前,且传热恶化后壁温飞升值增大。随着压力增加,壁温飞升发生干度值减小。内螺纹管汽水流动沸腾传热系数呈?形分布,传热系数峰值出现在汽水沸腾区。文中还给出了亚临界压力区内螺纹管单相区和汽水沸腾区的传热系数试验关联式。  相似文献   

19.
将BW公司的直流蒸汽发生器进行简化,采用常热流边界条件进行不同运行参数下直流蒸汽发生器二次侧流动与换热过程数值模拟,并与经典摩擦压降经验关联式进行对比。结果表明:Martinelli-Nelson关联式更适用于预测蒸干发生时两相流的摩擦压降;摩擦压降随质量含汽率增加整体呈现上升趋势,蒸干发生时摩擦压降的变化率明显增大;管内气液两相流摩擦压降随质量流量和热通量增加而增大,随运行压力增大而减小。其中质量流量、运行压力对摩擦压降的影响较明显,热通量对其影响较小。  相似文献   

20.
将B&W公司的直流蒸汽发生器进行简化,采用常热流边界条件进行不同运行参数下直流蒸汽发生器二次侧流动与换热过程数值模拟,并与经典摩擦压降经验关联式进行对比。结果表明:Martinelli-Nelson关联式更适用于预测蒸干发生时两相流的摩擦压降;摩擦压降随质量含汽率增加整体呈现上升趋势,蒸干发生时摩擦压降的变化率明显增大;管内气液两相流摩擦压降随质量流量和热通量增加而增大,随运行压力增大而减小。其中质量流量、运行压力对摩擦压降的影响较明显,热通量对其影响较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号