首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TWIK-1, TREK-1 and TASK K+ channels comprise a class of pore-forming subunits with four membrane-spanning segments and two P domains. Here we report the cloning of TRAAK, a 398 amino acid protein which is a new member of this mammalian class of K+ channels. Unlike TWIK-1, TREK-1 and TASK which are widely distributed in many different mouse tissues, TRAAK is present exclusively in brain, spinal cord and retina. Expression of TRAAK in Xenopus oocytes and COS cells induces instantaneous and non-inactivating currents that are not gated by voltage. These currents are only partially inhibited by Ba2+ at high concentrations and are insensitive to the other classical K+ channel blockers tetraethylammonium, 4-aminopyridine and Cs+. A particularly salient feature of TRAAK is that they can be stimulated by arachidonic acid (AA) and other unsaturated fatty acids but not by saturated fatty acids. These channels probably correspond to the functional class of fatty acid-stimulated K+ currents that recently were identified in native neuronal cells but have not yet been cloned. These TRAAK channels might be essential in normal physiological processes in which AA is known to play an important role, such as synaptic transmission, and also in pathophysiological processes such as brain ischemia. TRAAK channels are stimulated by the neuroprotective drug riluzole.  相似文献   

2.
A complementary DNA encoding a novel K+ channel, called TASK-2, was isolated from human kidney and its gene was mapped to chromosome 6p21. TASK-2 has a low sequence similarity to other two pore domain K+ channels, such as TWIK-1, TREK-1, TASK-1, and TRAAK (18-22% of amino acid identity), but a similar topology consisting of four potential membrane-spanning domains. In transfected cells, TASK-2 produces noninactivating, outwardly rectifying K+ currents with activation potential thresholds that closely follow the K+ equilibrium potential. As for the related TASK-1 and TRAAK channels, the outward rectification is lost at high external K+ concentration. The conductance of TASK-2 was estimated to be 14.5 picosiemens in physiological conditions and 59.9 picosiemens in symmetrical conditions with 155 mM K+. TASK-2 currents are blocked by quinine (IC50 = 22 microM) and quinidine (65% of inhibition at 100 microM) but not by the other classical K+ channel blockers tetraethylammonium, 4-aminopyridine, and Cs+. They are only slightly sensitive to Ba2+, with less than 17% of inhibition at 1 mM. As TASK-1, TASK-2 is highly sensitive to external pH in the physiological range. 10% of the maximum current was recorded at pH 6. 5 and 90% at pH 8.8. Unlike all other cloned channels with two pore-forming domains, TASK-2 is essentially absent in the brain. In human and mouse, TASK-2 is mainly expressed in the kidney, where in situ hybridization shows that it is localized in cortical distal tubules and collecting ducts. This localization, as well as its functional properties, suggest that TASK-2 could play an important role in renal K+ transport.  相似文献   

3.
Taurine is known to increase ATP-dependent calcium ion (Ca2+) uptake in retinal membrane preparations and in isolated rod outer segments (ROS) under low calcium conditions (10 microM) (Pasantes-Morales and Ordó?ez, 1982; Lombardini, 1991). In this report, ATP-dependent Ca2+ uptake in retinal membrane preparations was found to be inhibited by 5 microM cadmium (Cd2+), suggesting the involvement of cation channel activation. The activation of cGMP-gated cation channels, which are found in the ROS, is a crucial step in the phototransduction process. An inhibitor of cGMP-gated channels, LY83583, was found to inhibit taurine-stimulated ATP-dependent Ca2+ uptake but had no effect on ATP-dependent Ca2+ uptake in the absence of taurine, indicating that taurine may be increasing ATP-dependent Ca2+ uptake through a mechanism of action involving the opening of cGMP-gated channels. The activation of cGMP-gated channels with dibutyryl-cGMP and with phosphodiesterase inhibition using zaprinast caused an increase in ATP-dependent Ca2+ uptake in isolated ROS, but not in taurine-stimulated ATP-dependent Ca2+ uptake. LY83583 had the same effects in isolated ROS as in retinal membrane preparations. Another inhibitor of cGMP-gated channels, Rp-8-Br-PET-cGMPS, produced the same pattern of inhibition in isolated ROS as LY83583. Thus, there appears to be a causal link between taurine and the activation of the cGMP-gated channels in the ROS under conditions of low calcium concentration, a connection that suggests an important role for taurine in the visual signalling function of the retina.  相似文献   

4.
Calcium ions are released from intracellular stores in response to agonist-stimulated production of inositol 1,4,5-trisphosphate (InsP3), a second messenger generated at the cell membrane. Depletion of Ca2+ from internal stores triggers a capacitative influx of extracellular Ca2+ across the plasma membrane. The influx of Ca2+ can be recorded as store-operated channels (SOC) in the plasma membrane or as a current known as the Ca2+-release-activated current (I(crac)). A critical question in cell signalling is how SOC and I(crac) sense and respond to Ca2+-store depletion: in one model, a messenger molecule is generated that activates Ca2+ entry in response to store depletion; in an alternative model, InsP3 receptors in the stores are coupled to SOC and I(crac). The mammalian Htrp3 protein forms a well defined store-operated channel and so provides a suitable system for studying the effect of Ca2+-store depletion on SOC and I(crac). We show here that Htrp3 channels stably expressed in HEK293 cells are in a tight functional interaction with the InsP3 receptors. Htrp3 channels present in the same plasma membrane patch can be activated by Ca2+ mobilization in intact cells and by InsP3 in excised patches. This activation of Htrp3 by InsP3 is lost on extensive washing of excised patches but is restored by addition of native or recombinant InsP3-bound InsP3 receptors. Our results provide evidence for the coupling hypothesis, in which InsP3 receptors activated by InsP3 interact with SOC and regulate I(crac).  相似文献   

5.
Local calcium transients ('Ca2+ sparks') are thought to be elementary Ca2+ signals in heart, skeletal and smooth muscle cells. Ca2+ sparks result from the opening of a single, or the coordinated opening of many, tightly clustered ryanodine receptor (RyR) channels in the sarcoplasmic reticulum (SR). In arterial smooth muscle, Ca2+ sparks appear to be involved in opposing the tonic contraction of the blood vessel. Intravascular pressure causes a graded membrane potential depolarization to approximately -40 mV, an elevation of arterial wall [Ca2+]i and contraction ('myogenic tone') of arteries. Ca2+ sparks activate calcium-sensitive K+ (KCa) channels in the sarcolemmal membrane to cause membrane hyperpolarization, which opposes the pressure induced depolarization. Thus, inhibition of Ca2+ sparks by ryanodine, or of KCa channels by iberiotoxin, leads to membrane depolarization, activation of L-type voltage-gated Ca2+ channels, and vasoconstriction. Conversely, activation of Ca2+ sparks can lead to vasodilation through activation of KCa channels. Our recent work is aimed at studying the properties and roles of Ca2+ sparks in the regulation of arterial smooth muscle function. The modulation of Ca2+ spark frequency and amplitude by membrane potential, cyclic nucleotides and protein kinase C will be explored. The role of local Ca2+ entry through voltage-dependent Ca2+ channels in the regulation of Ca2+ spark properties will also be examined. Finally, using functional evidence from cardiac myocytes, and histological evidence from smooth muscle, we shall explore whether Ca2+ channels, RyR channels, and KCa channels function as a coupled unit, through Ca2+ and voltage, to regulate arterial smooth muscle membrane potential and vascular tone.  相似文献   

6.
In the visual and olfactory systems, cyclic nucleotide-gated (CNG) ion channels convert stimulus-induced changes in the internal concentrations of cGMP and cAMP into changes in membrane potential. Although it is known that significant activation of these channels requires the binding of three or more molecules of ligand, the detailed molecular mechanism remains obscure. We have probed the structural changes that occur during channel activation by using sulfhydryl-reactive methanethiosulfonate (MTS) reagents and N-ethylmaleimide (NEM). When expressed in Xenopus oocytes, the alpha-subunit of the bovine retinal channel forms homomultimeric channels that are activated by cGMP with a K1/2 of approximately 100 microM. Cyclic AMP, on the other hand, is a very poor activator; a saturating concentration elicits only 1% of the maximum current produced by cGMP. Treatment of excised patches with MTS-ethyltrimethylamine (MTSET) or NEM dramatically potentiated the channel's response to both cyclic nucleotides. After MTSET treatment, the dose-response relation for cGMP was shifted by over two orders of magnitude to lower concentrations. The effect on channel activation by cAMP was even more striking. After modification, the channels were fully activated by cAMP with a K1/2 of approximately 60 microM. This potentiation was abolished by conversion of Cys481 to a nonreactive alanine residue. Potentiation occurred more rapidly in the presence of saturating cGMP, indicating that this region of the channel is more accessible when the channel is open. Cys481 is located in a linker region between the transmembrane and cGMP-binding domains of the channel. These results suggest that this region of the channel undergoes significant movement during the activation process and is critical for coupling ligand binding to pore opening. Potentiation, however, is not mediated by the recently reported interaction between the amino- and carboxy-terminal regions of the alpha-subunit. Deletion of the entire amino-terminal domain had little effect on potentiation by MTSET.  相似文献   

7.
In the present work, we characterized the receptor properties and the conductive features of the inositol (1,4,5)-trisphosphate (IP3)-activated Ca2+ channels present in excised plasma-membrane patches obtained from mouse macrophages and A431 cells. We found that the receptor properties of the channels tested were similar to those of the IP3 receptor (IP3R) expressed in the endoplasmic reticulum (ER) membrane. These properties include activation by IP3, inhibition by heparin, time-dependent inactivation by high IP3 concentrations, activation by guanosine 5'o-thiotriphosphate and regulation by arachidonic acid. On the other hand, in terms of conductive properties, the channel closely resembles Ca2+-release-activated Ca2+ channels (Icrac). These conductive properties include extremely low conductance (approximately 1 pS), very high selectivity for Ca2+ over K+ (PCa/PK>1000), inactivation by high intracellular Ca2+ concentration and, importantly, strong inward rectification. Notably, the same channel was activated by: (1) agonists in the cell-attached mode of channel recording, and (2) cytosolic IP3 after patch excision. Although the possibility cannot be completely excluded that a novel type of IP3R is expressed exclusively in the plasma membrane, in their entirety our findings suggest that the plasma membrane of mouse macrophages and A431 cells contains Icrac-like Ca2+ channels coupled to an IP3-responsive protein which displays properties similar to those of the IP3R expressed in the ER membrane.  相似文献   

8.
Growth hormone (GH) secretion of the neonatal pituitary is stimulated by tau-aminobutyric acid (GABA) (1,2). Since in most cases GABA is known to act by increasing postsynaptic membrane permeability to chloride ions we tested the importance of chloride channel activation in the GH stimulatory effect of GABA in the neonatal pituitary. In the absence of chloride in the superfusion medium GABA was without effect on GH secretion of the neonatal pituitaries and its effect was attenuated by chloride channel inhibitors. The effect of growth hormone releasing hormone (GHRH) on GH secretion was attenuated in the chloride-free media, but it was not affected by simultaneous administration of chloride channel blockers. The present study indicates that GH stimulatory effect of GABA in the neonatal pituitaries might involve chloride channel activation probably resulting in secondary activation of calcium channels.  相似文献   

9.
Pacific ciguatoxin-1 (P-CTX-1), is a highly lipophilic cyclic polyether molecule originating from the marine dinoflagellate Gambierdiscus toxicus. Its effects were investigated on sodium channel subtypes present in acutely dissociated rat dorsal root ganglion neurons, using whole-cell patch clamp techniques. Concentrations of P-CTX-1 ranging from 0.2 to 20 nM had no effect on the kinetics of tetrodotoxin-sensitive (TTX-S) or tetrodotoxin-resistant (TTX-R) sodium channel activation and inactivation, however, a concentration-dependent reduction in peak current amplitude occurred in both channel types. The main actions of 5 nM P-CTX-1 on TTX-S sodium channels were a 13-mV hyperpolarizing shift in the voltage dependence of sodium channel activation and a 22-mV hyperpolarizing shift in steady-state inactivation (hinfinity). In addition, P-CTX-1 caused a rapid rise in the membrane leakage current in cells expressing TTX-S sodium channels. This effect was blocked by 200 nM TTX, indicating an action mediated through TTX-S sodium channels. In contrast, the main action of P-CTX-1 (5 nM) on TTX-R sodium channels was a significant increase in the rate of recovery from sodium channel inactivation. These results indicate that P-CTX-1 acts to modify voltage-gated sodium channels present in peripheral sensory neurons consistent with its action to increase nerve excitability. This provides an explanation for the sensory neurological disturbances associated with ciguatera fish poisoning.  相似文献   

10.
We studied the effects of oxygen free radicals on the ATP-sensitive potassium channel (KATP channel) of guinea-pig ventricular myocytes. Single KATP channel currents were recorded from inside-out patches in the presence of symmetrical K+ concentrations (140 mM in both bath and pipette solutions). Reaction of xanthine oxidase (0.1 U/ml) on hypoxanthine (0.5 mM) produced superoxide anions (.O2-) and hydrogen peroxide (H2O2). Exposure of the patch membrane to.O2- and H2O2 increased the opening of KATP channels, but this activation was prevented by adding 1 microM glibenclamide to the bath solution. In the presence of ferric iron (Fe3+: 0.1 mM), the same procedure produced hydroxyl radicals (.OH) via the iron-catalysed Haber-Weiss reaction.OH also activated KATP channels; however, this activation could not be prevented by, even very high concentrations of glibenclamide (10 microM). These different effects of glibenclamide suggest that the mode of action of these oxygen free radicals on KATP channels is different and that.OH is more potent than.O2-/H2O2 in activating KATP channels in the heart.  相似文献   

11.
It is not known whether alcohols modulate ion channels by directly binding to the channel protein or by perturbing the surrounding membrane lipid. Cutoff describes the phenomenon where the potency of 1-alkanols monotonically increases with alkyl chain length until a loss of efficacy occurs. Determination of the cutoff for a variety of channels can be important, because similar and/or dissimilar cutoffs might yield information regarding the nature of ethanol's site of action. In this study, the two-electrode voltage clamp technique was used to determine the cutoffs for the 1-alkanol potentiation of cloned Ca(2+)-activated-K+ (BK) channels and for the inhibition of cloned Shaw2 K+ channels, expressed in Xenopus oocytes. Ethanol, butanol, hexanol, and heptanol reversibly enhanced BK currents, whereas octanol and nonanol had no effect. In contrast, Shaw2 currents were potently inhibited by both octanol and decanol, but not by undecanol. Taken together, data demonstrate that the modulation of K+ channels by long chain alcohols is channel-specific. Interestingly, ethanol was a less potent activator of BK currents in the intact oocyte in comparison with its effect on this channel in excised membrane patches. The decrease in potency could not be attributed to an ethanol-dependent change in Ca2+ influx through endogenous voltage-gated channels, an effect that would alter the concentration of Ca2+ available to activate BK channels.  相似文献   

12.
At fertilization, the membrane potential of the egg of the lamprey, Lampetra japonica, shifted rapidly from its resting value of -12 to +36 mV and gradually returned to about the same resting level (fertilization potential). The amplitude of depolarization was influenced by the external Cl- concentration and by an anion channel blocker, DIDS, indicating that the positive shift of membrane potential resulted from Cl- efflux. A similar change in membrane potential (activation potential) was observed when the unfertilized egg was pricked with a fine needle or treated with A23187 to induce parthenogenetic activation. Pricking at the animal pole region (predetermined site for sperm entry) resulted in the occurrence of an immediate activation potential and the initiation of cortical granule exocytosis. A time lag between the pricking and the occurrence of the activation potential was observed when the egg was pricked at a distance from the animal pole. In this instance, the activation potential was produced immediately before the propagating cortical granule exocytosis initiated at the pricked site reached the animal pole region. Sperm-egg fusion was blocked in eggs voltage-clamped at +20 to +40 mV and inseminated, whereas it took place in eggs clamped at -60 to 0 mV. However, most eggs clamped at +20 to +40 mV did activate, indicating that the voltage dependence of egg activation differs from that of sperm-egg fusion. Although eggs voltage-clamped at negative membrane potentials permitted multiple sperm to fuse with the egg plasma membrane, the nucleus of the fused sperm did not necessarily enter the ooplasm. We conclude that: (1) A fast electrical block against polyspermy operates in this species and is effective for about 160 sec of the onset of the positive shift; (2) the opening of Cl- channels is responsible for the potential change; (3) the channels are largely localized in the animal pole region; (4) during voltage clamp at positive potentials, eggs can be activated without sperm-egg fusion; and (5) during voltage clamp at negative potentials, sperm-egg fusion occurs, but sperm entry into the egg cytoplasm does not always proceed.  相似文献   

13.
Activation of L-type calcium channels in the neuroendocrine, cholecytstokinin-secreting cell line, STC-1, is vital for secretion of CCK. In the present study, the regulation of L-type Ca2+ channels by cAMP and Ca2+ calmodulin dependent protein kinase II (CaM-KII) in STC-1 cells was investigated. Exposure to 3-isobutyl-1-methylxanthine (IBMX) increased intracellular cAMP levels, whole cell Ca2+ currents and activated Ca2+ channels in cell-attached membrane patches. Furthermore, in Fura-2AM loaded cells, cytosolic Ca2+ levels increased upon exposure to IBMX. By contrast, pretreatment of cells with the CaM-KII inhibitor KN-62, prevented IBMX activation of Ca2+ channels in cell-attached patches or increases in cytosolic Ca2+ levels. Inclusion of the synthetic peptide fragment 290-309 of CaM-KII, a CaM-KII antagonist, in the pipette solution, blocked the activation of whole cell Ca2+ currents upon addition of IBMX. These results indicate a unique mechanism of L-type Ca2+ channel activation involving two phosphorylation events.  相似文献   

14.
The actions of mu- and delta-opioid agonists (DAMGO and DPDPE, respectively) on GABAergic interneurons in stratum oriens of area CA1 of the hippocampus were examined by using whole-cell voltage-clamp recordings in brain slices. Both agonists consistently generated outward currents of similar magnitude (15-20 pA) in the majority of cells. However, under control conditions, current-voltage (I/V) relationships revealed that only a small number of these cells (3 of 77) demonstrated clear increases in membrane conductance, associated with the activation of the potassium current known as Girk. These interneurons also exhibited a slowly activating, inwardly rectifying current known as Ih on hyperpolarizing step commands. Ih was blocked by the extracellular application of cesium (3-9 mM) or ZD 7288 (10-100 microM) but was insensitive to barium (1-2 mM). In an effort to determine whether the holding current changes were attributable to the modulation of Girk and/or Ih, we used known blockers of these ion channels (barium or cesium and ZD 7288, respectively). Extracellular application of cesium (3-9 mM) or ZD 7288 (25-100 microM) blocked Ih and significantly reduced the opioid-induced outward currents by 58%. Under these conditions the opioid agonists activated a potassium current with characteristics similar to Girk. Similarly, during barium (1-2 mM) application the opioid-induced outward currents were reduced by 46%, and a clear reduction in Ih and the whole-cell conductance was revealed. These data suggest that the opioids can modulate both Ih and Girk in the same population of stratum oriens interneurons and that the modulation of these ion channels can contribute to the inhibition of interneuron activity in the hippocampus.  相似文献   

15.
A method to record the displacement current in nodal membrane is described and results obtained on nerve fibres from the frog Rana ridibunda are presented. This current is shown to be due to displacement of charges from an initial state, associated with a large negative membrane potential, to a final state. The dependence of the charge displacement on the membrane potential and degree of inactivation of the sodium channels suggests that the displacement current observed in these experiments is associated with activation of m-gates of the sodium channels. The density of the sodium channels in nodal membrane of Rana ridibunda determined from the density of the charge displaced is about 5000 channels/mum2.  相似文献   

16.
In muscle cells, excitation-contraction (e-c) coupling is mediated by "calcium release units," junctions between the sarcoplasmic reticulum (SR) and exterior membranes. Two proteins, which face each other, are known to functionally interact in those structures: the ryanodine receptors (RyRs), or SR calcium release channels, and the dihydropyridine receptors (DHPRs), or L-type calcium channels of exterior membranes. In skeletal muscle, DHPRs form tetrads, groups of four receptors, and tetrads are organized in arrays that face arrays of feet (or RyRs). Triadin is a protein of the SR located at the SR-exterior membrane junctions, whose role is not known. We have structurally characterized calcium release units in a skeletal muscle cell line (1B5) lacking Ry1R. Using immunohistochemistry and freeze-fracture electron microscopy, we find that DHPR and triadin are clustered in foci in differentiating 1B5 cells. Thin section electron microscopy reveals numerous SR-exterior membrane junctions lacking foot structures (dyspedic). These results suggest that components other than Ry1Rs are responsible for targeting DHPRs and triadin to junctional regions. However, DHPRs in 1B5 cells are not grouped into tetrads as in normal skeletal muscle cells suggesting that anchoring to Ry1Rs is necessary for positioning DHPRs into ordered arrays of tetrads. This hypothesis is confirmed by finding a "restoration of tetrads" in junctional domains of surface membranes after transfection of 1B5 cells with cDNA encoding for Ry1R.  相似文献   

17.
Recent biophysical investigations of vertebrate olfactory signal transduction have revealed that Ca2+-gated Cl- channels are activated during odorant detection in the chemosensory membrane of olfactory sensory neurons (OSNs). To understand the role of these channels in chemoelectrical signal transduction, it is necessary to know the Cl--equilibrium potential that determines direction and size of Cl- fluxes across the chemosensory membrane. We have measured Cl-, Na+, and K+ concentrations in ultrathin cryosections of rat olfactory epithelium, as well as relative element contents in isolated microsamples of olfactory mucus, using energy-dispersive x-ray microanalysis. Determination of the Cl- concentrations in dendritic knobs and olfactory mucus yielded an estimate of the Cl--equilibrium potential ECl in situ. With Cl- concentrations of 69 mM in dendritic knobs and 55 mM in olfactory mucus, we obtained an ECl value of +6 +/- 12 mV. This indicates that Ca2+-gated Cl- channels in olfactory cilia conduct inward currents in vivo carried by Cl- efflux into the mucus. Our results show that rat OSNs are among the few known types of neurons that maintain an elevated level of cytosolic Cl-. In these cells, activation of Cl- channels leads to depolarization of the membrane voltage and can induce electrical excitation. The depolarizing Cl- current in mammalian OSNs appears to contribute a major fraction to the receptor current and may sustain olfactory function in sweet-water animals.  相似文献   

18.
Various brain K+ channels, which may normally exist as complexes of alpha (pore-forming) and beta (auxiliary) subunits, were subjected to regulation by metabotropic glutamate receptors. Kv1.1/Kvbeta1.1 is a voltage-dependent K+ channel composed of alpha and beta proteins that are widely expressed in the brain. Expression of this channel in Xenopus oocytes resulted in a current that had fast inactivating and noninactivating components. Previously we showed that basal and protein kinase A-induced phosphorylation of the alpha subunit at Ser-446 decreases the fraction of the noninactivating component. In this study we investigated the effect of protein kinase C (PKC) on the channel. We showed that a PKC-activating phorbol ester (phorbol 12-myristate 13-acetate (PMA)) increased the noninactivating fraction via activation of a PKC subtype that was inhibited by staurosporine and bisindolylmaleimide but not by calphostin C. However, it was not a PKC-induced phosphorylation but rather a dephosphorylation that mediated the effect. PMA reduced the basal phosphorylation of Ser-446 significantly in plasma membrane channels and failed to affect the inactivation of channels having an alpha subunit that was mutated at Ser-446. Also, the activation of coexpressed mGluR1a known to activate phospholipase C mimicked the effect of PMA on the inactivation via induction of dephosphorylation at Ser-446. Thus, this study identified a potential neuronal pathway initiated by activation of metabotropic glutamate receptor 1a coupled to a signaling cascade that possibly utilized PKC to induce dephosphorylation and thereby to decrease the extent of inactivation of a K+ channel.  相似文献   

19.
Basic fibroblast growth factor (bFGF/FGF2) exhibits widespread biological activities in the nervous system. However, little is known about the cascade of intracellular events that links the activation of its tyrosine kinase receptors to these effects. Here we report that, in ciliary ganglion neurons from chick embryo, this trophic factor significantly enhanced neuronal survival. The percentage of surviving neurons was reduced when intracellular calcium was chelated by adding a membrane-permeable BAPTA ester to the culture medium, while antagonists of L- and N-type voltage-dependent calcium channels were ineffective. The ionic signals in response to bFGF stimulation have been studied using cytofluorimetric and patch-clamp techniques. In single-cell Fura-2 measurements, bFGF elicited a long lasting rise of the cytosolic calcium concentration that was dependent on [Ca2+]o. In whole-cell experiments, we observed a reversible depolarization of the membrane resting potential and an inward cationic current. Single channel experiments, performed in the cell-attached configuration, provide evidence for the activation of two families of Ca2+-permeable cationic channels. Moreover, inositol 1,4,5-trisphosphate opens channels with similar properties, suggesting that this cytosolic messenger can be responsible for the calcium influx induced by bFGF.  相似文献   

20.
K+ channel modulation in arterial smooth muscle   总被引:1,自引:0,他引:1  
Potassium channels play an essential role in the membrane potential of arterial smooth muscle, and also in regulating contractile tone. Four types of K+ channel have been described in vascular smooth muscle: Voltage-activated K+ channels (Kv) are encoded by the Kv gene family, Ca(2+)-activated K+ channels (BKCa) are encoded by the slo gene, inward rectifiers (KIR) by Kir2.0, and ATP-sensitive K+ channels (KATP) by Kir6.0 and sulphonylurea receptor genes. In smooth muscle, the channel subunit genes reported to be expressed are: Kv1.0, Kv1.2, Kv1.4-1.6, Kv2.1, Kv9.3, Kv beta 1-beta 4, slo alpha and beta, Kir2.1, Kir6.2, and SUR1 and SUR2. Arterial K+ channels are modulated by physiological vasodilators, which increase K+ channel activity, and vasoconstrictors, which decrease it. Several vasodilators acting at receptors linked to cAMP-dependent protein kinase activate KATP channels. These include adenosine, calcitonin gene-related peptide, and beta-adrenoceptor agonists. beta-adrenoceptors can also activate BKCa and Kv channels. Several vasoconstrictors that activate protein kinase C inhibit KATP channels, and inhibition of BKCa and Kv channels through PKC has also been described. Activators of cGMP-dependent protein kinase, in particular NO, activate BKCa channels, and possibly KATP channels. Hypoxia leads to activation of KATP channels, and activation of BKCa channels has also been reported. Hypoxic pulmonary vasoconstriction involves inhibition of Kv channels. Vasodilation to increased external K+ involves KIR channels. Endothelium-derived hyperpolarizing factor activates K+ channels that are not yet clearly defined. Such K+ channel modulations, through their effects on membrane potential and contractile tone, make important contributions to the regulation of blood flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号