首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 353 毫秒
1.
The output feedback adaptive control problem is investigated for nonholonomic systems with strongly nonlinear uncertainties and unknown virtual control directions. A nonlinear output feedback switching controller based on the output measurement of the first subsystem is employed in order to make the state scaling effective and ensure the convergence of the system states. The novel observer/estimator is introduced for state and unknown parameter estimates. The integrator backstepping technique by the use of a constructive recursive is applied to the design of the adaptive controller and to overcome the unknown virtual control directions. The simulation result validates the effectiveness of the proposed scheme.  相似文献   

2.
ABSTRACT

The work addresses the output regulation problem for coupled linear multiple input multiple output (MIMO) hyperbolic partial integro-differential equation systems with disturbances affecting the systems through the space and boundary input. The exosystems are extended to generate ramp signals and general family of polynomial signals. The system decomposition is applied through the state transformation and yields a decoupled equivalent system. Based on the decoupled form, the backstepping transformation is applied and then in the new coordinate, the full state and output-feedback regulators are designed, respectively. For the state feedback regulator, the corresponding regulator equation is obtained and its solvability conditions are provided to facilitate the regulator design and feasibility. The design of observer-based regulator is based on the decoupling of the observer error system into a PDE subsystem and an ODE subsystem so that the backstepping approach achieves stabilisation by eigenvalue assignment leading to design of observer stabilizing gains.  相似文献   

3.
This paper is concerned with the problem of adaptive output feedback quantised tracking control for a class of stochastic nonstrict-feedback nonlinear systems with asymmetric input saturation. Especially, both input and output signals are quantised by two sector-bounded quantisers. In order to solve the technical difficulties originating from asymmetric saturation nonlinearities and sector-bounded quantisation errors, some special technique, approximation-based methods and Gaussian error function-based continuous differentiable model are exploited. Meanwhile, an observer including the quantised input and output signals is designed to estimate the states. Then, a novel output feedback adaptive quantised control scheme is proposed to ensure that all signals in the closed-loop system are 4-moment (2-moment) semi-globally uniformly ultimately bounded while the output signal follows a desired reference signal. Finally, the effectiveness and applicability of the design methodology is illustrated with two simulation examples.  相似文献   

4.
The multiple–input multiple–output (MIMO) output feedback (OF) control problem of an exothermic multi-jacket tubular open-loop unstable reactor is addressed. Over its axial length, the reactor has several equally sized cooling jackets. The controller must adjust the jacket temperatures on the basis of per jacket temperature measurements so that the closed-loop system is robustly stable. The problem is solved within a constructive framework, by combining notions and tools from chemical reactor engineering and partial differential equations (PDEs) control systems theory. The result is a MIMO nonlinear OF dynamic control design with (i) a decentralized MIMO passive state feedback (SF) controller implemented with a pointwise observer (PWO), (ii) closed-loop stability conditions in terms of sensor set and control gains, and (iii) efficient late lumping-based on-line implementation. The design is put in perspective with industrial PI and inventory control, and applied to a representative example through numerical simulation with favorable comparison against adaptive controllers.  相似文献   

5.
This paper investigates an adaptive fuzzy output feedback control design problem for switched nonlinear system in non-triangular structure form. The discussed system contains unknown nonlinear dynamics, unmeasured states and unknown time-varying delays under a batch of switching signals. Fuzzy logic systems are utilised to learn unknown nonlinear dynamics and construct a fuzzy switched nonlinear observer. By combining the property of fuzzy basis function with Lyapunov–Krasovskii functional and the command filter, a novel observer-based fuzzy adaptive backstepping schematic design algorithm is presented. Furthermore, the stability of the closed-loop control system is proved via Lyapunov stability theory and average dwell time method. The simulation results are presented to verify the validity of the proposed control scheme.  相似文献   

6.
The problem of adaptive output feedback stabilisation is addressed for a more general class of non-strict-feedback stochastic nonlinear systems in this paper. The neural network (NN) approximation and the variable separation technique are utilised to deal with the unknown subsystem functions with the whole states. Based on the design of a simple input-driven observer, an adaptive NN output feedback controller which contains only one parameter to be updated is developed for such systems by using the dynamic surface control method. The proposed control scheme ensures that all signals in the closed-loop systems are bounded in probability and the error signals remain semi-globally uniformly ultimately bounded in fourth moment (or mean square). Two simulation examples are given to illustrate the effectiveness of the proposed control design.  相似文献   

7.
In this paper, a robust adaptive fuzzy control scheme for a class of nonlinear system with uncertainty is proposed. First, using prior knowledge about the plant we obtain a fuzzy model, which is called the generalized fuzzy hyperbolic model (GFHM). Secondly, for the case that the states of the system are not available an observer is designed and a robust adaptive fuzzy output feedback control scheme is developed. The overall control system guarantees that the tracking error converges to a small neighborhood of origin and that all signals involved are uniformly bounded. The main advantages of the proposed control scheme are that the human knowledge about the plant under control can be used to design the controller and only one parameter in the adaptive mechanism needs to be on-line adjusted.  相似文献   

8.
We consider the problem of function of state plus unknown input estimation of a linear time-invariant system using only the measured outputs. Two reduced-order input estimators built upon a state functional observer are proposed. The first is an extension of a state/input estimator, while the second is based on adaptive observer design technique. The proposed estimator can be designed under less restrictive conditions than those of the previous work, and unlike some of the past studies the proposed observer can be designed for certain nonminimum phase systems.  相似文献   

9.
In this paper, a robust adaptive fuzzy control scheme for a class of nonlinear system with uncertainty is proposed. First, using prior knowledge about the plant we obtain a fuzzy model, which is called the generalized fuzzy hyperbolic model (GFHM). Secondly, for the case that the states of the system are not available an observer is designed and a robust adaptive fuzzy output feedback control scheme is developed. The overall control system guarantees that the tracking error converges to a small neighborhood of origin and that all signals involved are uniformly bounded. The main advantages of the proposed control scheme are that the human knowledge about the plant under control can be used to design the controller and only one parameter in the adaptive mechanism needs to be on-line adjusted.  相似文献   

10.
In this paper, the design and operation of a special electromagnetic actuator as a variable engine valve actuator are presented. Further, this paper describes a feasible approximated velocity switching estimator based on measurements of current and input voltage to achieve sensorless control. The proposed concept allows a reduced‐order observer to be conceived and yields a specific control strategy with an acceptable performance. In general, this approach represents a viable strategy to build reduced‐order observers for estimating the velocity of systems through the measurement of input current and voltage. The robustness of the velocity tracking is explored using a minimum variance approach. The effect of the noise is minimized, and the position can be achieved through an adaptive and optimized structure by combining this particular velocity estimator and an observer based on the electromechanical system. Position control is achieved through an inversion of the model. This approach avoids a more complex structure for the observer and yields an acceptable performance as well as eliminating bulky position‐sensor systems. In addition, a control strategy is presented and discussed. Computer simulations of the sensorless control structure are presented in which the positive effects of the observer with optimized parameter setting are visible in the closed‐loop control.  相似文献   

11.
This paper studies a constraint adaptive output regulation design for a class of nonlinear systems with an unknown exosystem by output feedback control. First, by introducing an internal model with some known design parameter, our concerned problem may be formulated as a specific regulation problem with output constraint. Then, the barrier Lyapunov function technique is further integrated to approach the problem. It is shown that such a constraint adaptive output regulation problem is solvable without constraint violation. In particular, the constructed regulator cannot only keep the boundedness of the closed‐loop system signals but also guarantees the parameter convergence for the unknown parameter vector in the exosystem. As an application, it is illustrated that our result is applicable in tracking the control of an electrostatic torsional micromirror with physical geometry constraint. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
杨强  刘玉生 《控制与决策》2015,30(6):993-999
基于自适应非线性阻尼,提出一种鲁棒自适应输出反馈控制方法。该方法适用于带有未建模动态、未知非线性、有界扰动、未知非线性参数和不确定控制系数的多输入多输出非线性系统。理论证明,在一定的假设条件下,该方法能保证闭环系统所有动态信号有界;不论有多少不确定非线性参数、多高阶的非线性系统,只需要一个自适应控制参数和观察参数;而且通过选择适当的控制器和观测器参数,能使控制误差和估计误差达到任意小。仿真结果表明了所提出方法的有效性。  相似文献   

13.
ABSTRACT

This paper considers the output-feedback fault-tolerant tracking control problem for a class of uncertain nonlinear switched systems with nonlinear faults and strict-feedback form, where the faults which are nonaffine occur on the actuator. As a kind of specialised function approximating tool, fuzzy logic systems (FLSs), are employed to approximate the unknown smooth nonlinear functions. A switched fuzzy observer is designed to address the problem of unmeasurable states, filtered signals are used to address algebraic loop problem and the average dwell time (ADT) method is further utilised to prove the stability of the resulting closed-loop systems under a type of slowly switching signals. Based on the backstepping recursive design technique and Lyapunov function method, an adaptive fuzzy output-feedback control scheme is developed. The developed control method can ensure all the signals are semi-globally uniformly ultimately bounded (SGUUB) and the system output tracks the reference signal tightly even if unknown fault occurs. A simulation carried on an example demonstrates the validity of the obtained control scheme.  相似文献   

14.
We consider the problem of parameter estimation and output estimation for systems in a transmission control protocol (TCP) based network environment. As a result of networked-induced time delays and packet loss, the input and output data are inevitably subject to randomly missing data. Based on the available incomplete data, we first model the input and output missing data as two separate Bernoulli processes characterised by probabilities of missing data, then a missing output estimator is designed, and finally we develop a recursive algorithm for parameter estimation by modifying the Kalman filter-based algorithm. Under the stochastic framework, convergence properties of both the parameter estimation and output estimation are established. Simulation results illustrate the effectiveness of the proposed algorithms.  相似文献   

15.
This paper presents an approximation design for a decentralized adaptive output‐feedback control of large‐scale pure‐feedback nonlinear systems with unknown time‐varying delayed interconnections. The interaction terms are bounded by unknown nonlinear bounding functions including unmeasurable state variables of subsystems. These bounding functions together with the algebraic loop problem of virtual and actual control inputs in the pure‐feedback form make the output‐feedback controller design difficult and challenging. To overcome the design difficulties, the observer‐based dynamic surface memoryless local controller for each subsystem is designed using appropriate Lyapunov‐Krasovskii functionals, the function approximation technique based on neural networks, and the additional first‐order low‐pass filter for the actual control input. It is shown that all signals in the total controlled closed‐loop system are semiglobally uniformly bounded and control errors converge to an adjustable neighborhood of the origin. Finally, simulation examples are provided to illustrate the effectiveness of the proposed decentralized control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, an adaptive output‐feedback control problem is investigated for nonlinear strict‐feedback stochastic systems with input saturation and output constraint. A barrier Lyapunov function is used to solve the problem of output constraint. Then, fuzzy logic systems are used to approximate the unknown nonlinear functions, and a fuzzy state observer is designed to estimate the unmeasured states. To overcome the difficulties in designing the control signal in the saturation, we introduce an auxiliary signal in the n + 1th step in the deduction. By combining Nussbaum technique and the adaptive backstepping technique, an adaptive output‐feedback control method is developed. The proposed control method not only overcomes the problem of the compensation for the nonlinear term from the input saturation but also overcomes the problem of unavailable state measurements. It is proved that all the signals of the closed‐loop system are semiglobally uniformly ultimately bounded. Finally, the effectiveness of the proposed method is verified by the simulation results.  相似文献   

17.
This paper presents a backstepping solution for the output feedback control of general linear heterodirectional hyperbolic PDE-ODE systems with spatially varying coefficients. Thereby, the ODE is coupled to the PDE in-domain and at the uncontrolled boundary, whereas the ODE is coupled with the latter boundary. For the state feedback design, a two-step backstepping approach is developed, which yields the conventional kernel equations and additional decoupling equations of simple form. In order to implement the state feedback controller, the design of observers for the PDE-ODE systems in question is considered, whereby anti-collocated measurements are assumed. Exponential stability with a prescribed convergence rate is verified for the closed-system pointwise in space. The resulting compensator design is illustrated for a 4 × 4 heterodirectional hyperbolic system coupled with a third-order ODE modelling a dynamic boundary condition.  相似文献   

18.
Adaptive output control of a class of uncertain chaotic systems   总被引:2,自引:0,他引:2  
In this paper, a new observer-based backstepping output control scheme is proposed for stabilizing and controlling a class of uncertain chaotic systems. The controller is designed through the use of a robust observer and backstepping technique. We firstly show that many chaotic systems as paradigms in the research of chaos can be transformed into a class of nonlinear systems in the feedback form. Secondly, the synchronization problem is converted to the tracking problem from control theory, thereby leading to the use of state observer design techniques. A new observer is utilized to estimate the unmeasured states. Unlike some existing methods for chaos control, no priori knowledge on the system parameters is required and only the output signal is available for control purpose. The Lyapunov functions are quadratic in the state estimates, the observer errors and the parameter estimation error based on the backstepping technique. It is shown that not only global stability is guaranteed by the proposed controller, but also both transient and asymptotic tracking performances are quantified as explicit functions of the design parameters so that designers can tune the design parameters in an explicit way to obtain the desired closed-loop behavior.  相似文献   

19.
In this paper, a robust adaptive fuzzy control approach is proposed for a class of nonlinear systems in strict‐feedback form with the unknown time‐varying saturation input. To deal with the time‐varying saturation problem, a novel controller separation approach is proposed in the literature to separate the desired control signal from the practical constrained control input. Furthermore, an optimized adaptation method is applied to the dynamic surface control design to reduce the number of adaptive parameters. By utilizing the Lyapunov synthesis, the fuzzy logic system technique and the Nussbaum function technique, an adaptive fuzzy control algorithm is constructed to guarantee that all the signals in the closed‐loop control system remain semiglobally uniformly ultimately bounded, and the tracking error is driven to an adjustable neighborhood of the origin. Finally, some numerical examples are provided to validate the effectiveness of the proposed control scheme in the literature.  相似文献   

20.
This paper investigates the problem of adaptive neural control design for a class of single‐input single‐output strict‐feedback stochastic nonlinear systems whose output is an known linear function. The radial basis function neural networks are used to approximate the nonlinearities, and adaptive backstepping technique is employed to construct controllers. It is shown that the proposed controller ensures that all signals of the closed‐loop system remain bounded in probability, and the tracking error converges to an arbitrarily small neighborhood around the origin in the sense of mean quartic value. The salient property of the proposed scheme is that only one adaptive parameter is needed to be tuned online. So, the computational burden is considerably alleviated. Finally, two numerical examples are used to demonstrate the effectiveness of the proposed approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号