首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This study addresses the planning and implementation of energy, industry, and carbon economy policies concerning the development of the Taiwan's energy intensive industries from perspective of climate change. As a newly industrialized country, Taiwan attaches greater importance to the development of green energy and low-carbon industries, in cooperation with global pressure for carbon reduction due to climate changes, through energy and industrial conferences. Thus, in the past year the Taiwanese government constructed four laws concerning energy and carbon reduction in order to drive the green energy industry; furthermore, it plans to reduce current carbon emission benchmarks. Nevertheless, statistical analysis found that in the last decade, energy intensive industries have presented structural unbalance regarding energy consumption, CO2 emissions, energy intensity, contributions to the GDP, and product value. Industries in the industrial sector have high energy consumption, high carbon emissions, and increase total domestic consumption and carbon emissions, which have disproportionate contributions to industrial added value; nevertheless, the government continues to approve investments for such energy intensive industries, and results in continuous increases in energy consumption and carbon emissions. This contradictory phenomenon indicates that newly industrialized countries rely on a manufacturing economic structure, which is difficult to adjust and violates the trends of a global low-carbon economy. Hence, the government must examine and adjust such unbalanced industrial structures, where such adjustments are executed in a fair and just manner, and encourage the development of high value-added measures for low-carbon manufacturing and service sectors to become equal with competitors in a global economy.  相似文献   

2.
With the proposal of carbon neutral goals in various countries, the deepening of global action on climate change and the acceleration of green economy recovery in the post epidemic era, building a low-carbon and clean hydrogen supply system has gradually become a global consensus. In order to promote the development of clean hydrogen market, the standards of green hydrogen have been discussed at global level. The quantitative definition of different hydrogen production methods based on the greenhouse gases (GHG) emission of life cycle assessment (LCA) methods is gradually recognised by the industry. China issued the “Standard and evaluation of low-carbon hydrogen, clean hydrogen and renewable hydrogen” in December 2020. This is the first formal green hydrogen standard worldwide, which provides calculation methods for GHG of different hydrogen production paths. This chapter discusses the major green hydrogen standards initiative in the world, analyses the key factors of the global green hydrogen standard, and introduces how to establish the quantitative standards and evaluation system of low-carbon hydrogen, clean hydrogen, and renewable hydrogen by using the method in China.  相似文献   

3.
The national goal of 40–45% mitigation of the 2005 level intensity of carbon by 2020 was announced by the Chinese government at the Copenhagen Conference. Every industry in China is preparing to realize this national reduction target. Some attempts have been made to achieve low-carbon development in a few industries, but relatively little work has linked low-carbon development to tourism. This article concentrates on how to develop low-carbon tourism using a quantitative approach. Firstly, the tourism system including some mutual influence factors is investigated and some historical data are given in support for the research of their quantitative relationship. Secondly, a differential dynamic system model with fuzzy coefficients is proposed to predict tourism revenue, energy consumption, waste emissions and the carbon intensity. Finally, an application to Shizhong District of Leshan City in China (LCSD), as a representative of a world natural and cultural heritage area, is presented to show the trend of modern tourism in a low-carbon economy and prove the effectiveness of the proposed model.  相似文献   

4.
Environmental problems brought by industry are attracting extensive attention so a comprehensive analysis of industrial environmental performance is increasingly important. However, the comparison of industrial sector efficiencies is complicated by the fact that the natural resources consumed and/or the pollutants discharged by each sector may differ. In this paper, we extend the DEA model to consider two-sided non-homogeneous problems, handling DMU sets that have non-homogeneity in both inputs and outputs. This is different from the previous researches which generally focus on regional data to avoid non-homogeneity. Today environmental reform and energy conservation in various industrial sectors are both parts of the basic state policy of China. The empirical results show that: (1) Sectors' efficiencies are still low and unbalanced. The Recycling and Disposal of Waste department achieves the best energy saving and emission reduction efficiency. (2) 38 sectors can be clustered into four groups and set new benchmark in each group. (3) The overall efficiency of 38 industrial sectors in China maintained a rising trend in five years. With this more realistic analysis of environmental efficiency, the Chinese government can make more informed decisions to realize sustainable industrial development.  相似文献   

5.
Incentives for energy efficiency in the EU Emissions Trading Scheme   总被引:1,自引:0,他引:1  
This paper explores the incentives for energy efficiency induced by the European Union Emissions Trading Scheme (EU ETS) for installations in the energy and industry sectors. Our analysis of the National Allocation Plans for 27 EU Member States for phase 2 of the EU ETS (2008–2012) suggests that the price and cost effects for improvements in carbon and energy efficiency in the energy and industry sectors will be stronger than in phase 1 (2005–2007), but only because the European Commission has substantially reduced the number of allowances to be allocated by the Member States. To the extent that companies from these sectors (notably power producers) pass through the extra costs for carbon, higher prices for allowances translate into stronger incentives for the demand-side energy efficiency. With the cuts in allocation to energy and industry sectors, these will be forced to greater reductions; thus, the non-ET sectors like household, tertiary, and transport will have to reduce less, which is more in line with the cost-efficient share of emission reductions. The findings also imply that domestic efficiency improvements in the energy and industry sectors may remain limited since companies can make substantial use of credits from the Kyoto Mechanisms. The analysis of the rules for existing installations, new projects, and closures suggests that incentives for energy efficiency are higher in phase 2 than in phase 1 because of the increased application of benchmarking to new and existing installations and because a lower share of allowances will be allocated for free. Nevertheless, there is still ample scope to further improve the EU ETS so that the full potential for energy efficiency can be realized.
Joachim SchleichEmail:
  相似文献   

6.
For the Chinese industry as the mainstay of the national economy and dominant energy user and carbon emitter, an integrative assessment is performed from major energy policy perspectives of energy security, energy efficiency and carbon emission. Extensive systems indicators, including oil dependence ratio, average oil growth rate; indices of energy diversity, of carbonization and of oil growth risk; ratios of energy use to output, to value added and to compensation for laborers; ratios of carbon emission to output, to value added and to compensation for laborers, are devised to assess the Chinese industry 2002–2007 with most recent statistics availability. Combined indicators are identified by sparse principle component analysis to characterize sector performances. The industrial sectors are classified into five clusters and the main features of each cluster are pinpointed using fuzzy clustering algorithm. Concrete results facilitate comparisons of sectors to enable more accurate policy recommendations.  相似文献   

7.
This paper assesses energy efficiency in Swedish industry. Using unique firm-level panel data covering the years 2001–2008, the efficiency estimates are obtained for firms in 14 industrial sectors by using data envelopment analysis (DEA). The analysis accounts for multi-output technologies where undesirable outputs are produced alongside with the desirable output. The results show that there was potential to improve energy efficiency in all the sectors and relatively large energy inefficiencies existed in small energy-use industries in the sample period. Also, we assess how the EU ETS, the carbon dioxide (CO2) tax and the energy tax affect energy efficiency by conducting a second-stage regression analysis. To obtain consistent estimates for the regression model, we apply a modified, input-oriented version of the double bootstrap procedure of Simar and Wilson (2007). The results of the regression analysis reveal that the EU ETS and the CO2 tax did not have significant influences on energy efficiency in the sample period. However, the energy tax had a positive relation with the energy efficiency.  相似文献   

8.
This paper combines engineering and social science approaches to enhance our understanding of industrial energy efficiency and broaden our perspective on policy making in Europe. Sustainable development demands new strategies, solutions, and policy-making approaches. Numerous studies of energy efficiency potential state that cost-effective energy efficiency technologies in industry are not always implemented for various reasons, such as lack of information, procedural impediments, and routines not favoring energy efficiency. Another reason for the efficiency gap is the existence of particular values, unsupportive of energy efficiency, in the dominant networks of a branch of trade. Analysis indicates that different sectors of rather closed communities have established their own tacit knowledge, perceived truths, and routines concerning energy efficiency measures. Actors in different industrial sectors highlight different barriers to energy efficiency and why cost-effective energy efficiency measures are not being implemented. The identified barriers can be problematized in relation to the social context to understand their existence and how to resolve them.  相似文献   

9.
《Energy》2005,30(5):649-675
The extraction, conversion, and use of energy carriers and materials in the Norwegian society in 2000 were investigated by Sciubba's method of extended-exergy accounting (EEA). In this method, extended-exergy (EE) values are assigned to labor and capital fluxes in addition to thermomechanical and chemical exergy values. The interchange of resources and products was quantified in terms of energy and exergy between seven sectors of the society and between the sectors and other countries. The extraction of resources from the environment and the discharge and deposit of waste were also included in the analysis. In the extraction sector, the exergy and EE conversion efficiencies both were 95%, and in the conversion sector both were approximately 76%. These two sectors are, respectively, dominated by oil and gas extraction and hydropower conversion. The third sector—agriculture, forestry, the fisheries, and food industry—had a lower exergy output to input ratio, 45%, whereas the EE conversion efficiency was 62%. A fourth sector, manufacturing industry, was dominated by paper, metal, and also chemical industry, and the efficiencies were 50 and 69%, respectively. In the transportation and service sectors, the labor and capital fluxes dominated the EEA, giving EE efficiencies of 63 and 75%, respectively, whereas the exergy efficiencies were 19 and 26%, respectively. In the seventh sector, the domestic sector (i.e. households), there was a close to zero energy and exergy output in this approach, since no products or resources were transferred to the other sectors except waste for re-circulation. However, the EE output of this sector was greater than the input, since labor is supplied from this sector to the other sectors.  相似文献   

10.
Current energy research investment policy in New Zealand is based on assumed benefits of transitioning to hydrogen as a transport fuel and as storage for electricity from renewable resources. The hydrogen economy concept, as set out in recent commissioned research investment policy advice documents, includes a range of hydrogen energy supply and consumption chains for transport and residential energy services. The benefits of research and development investments in these advice documents were not fully analyzed by cost or improvements in energy efficiency or green house gas emissions reduction. This paper sets out a straightforward method to quantify the system-level efficiency of these energy chains. The method was applied to transportation and stationary heat and power, with hydrogen generated from wind energy, natural gas and coal. The system-level efficiencies for the hydrogen chains were compared to direct use of conventionally generated electricity, and with internal combustion engines operating on gas- or coal-derived fuel. The hydrogen energy chains were shown to provide little or no system-level efficiency improvement over conventional technology. The current research investment policy is aimed at enabling a hydrogen economy without considering the dramatic loss of efficiency that would result from using this energy carrier.  相似文献   

11.
With its rapid economic growth, China is now confronted with soaring pressure from both its energy supply and the environment. To deal with this conflict, energy end-use efficiency improvement is now promoted by the government as an emphasis for future energy saving. This study explores the general equilibrium effect of energy end-use efficiency improvement on China’s economy, energy use, and CO2 emissions. This paper develops a static, multisector computable general equilibrium model (CGE) for China, with specific detail in energy use and with the embodiment of energy efficiency. In order to explore the ability of subsidizing non-fossil-generated electricity on moderating potential rebound effects, in this model, the electricity sector was deconstructed into five specific generation activities using bottom–up data from the Chinese electricity industry. The model is calibrated into a 16-sector Chinese Social Accounting Matrix for the year 2002. In the analysis, seven scenarios were established: business as usual, solely efficiency improvement, and five policy scenarios (taxing carbon, subsidized hydropower, subsidized nuclear power, combination of taxing carbon and subsidized hydropower, combination of taxing carbon and subsidized nuclear power). Results show that a sectoral-uniform improvement of energy end-use efficiency will increase rather than decrease the total energy consumption and CO2 emissions. The sensitivity analysis of sectoral efficiency improvement shows that efficiency improvements happened in different sectors may have obvious different extents of rebound. The three sectors, whose efficient improvements do not drive-up total national energy use and CO2 emissions, include Iron and Steel, Building Materials, and Construction. Thus, the improvement of energy end-use efficiency should be sectoral specific. When differentiating the sectoral energy-saving goal, not only the saving potential of each sector but also its potential to ease the total rebound should be taken into account. Moreover, since the potential efficiency improvement for a sector over a certain period will be limited, technology measures should work along with a specific policy to neutralize the rebound effect. Results of policy analysis show that one relatively enhanced way is to combine carbon taxing with subsidized hydropower.  相似文献   

12.
中国提出2030年前碳达峰、2060年前碳中和的目标将对全社会经济发展、能源消费带来深刻的变革。通过构建广东省气候-经济-环境-健康综合评估模型(ICEEH-GD),设计了如期达峰(2030年达峰)和率先达峰(2025年达峰)两个情景,研究不同碳达峰时点下的投资结构变化和经济社会影响。结果表明,率先达峰情景促进全社会投资从电力、水泥、油品开采、焦炭、钢铁等低增加值高碳排放部门转向服务业、电子信息、机械制造、建筑业、化工业等高增加值低碳排放部门,投资量总计转移了819亿元,带动相关部门的增加值增长135亿元。率先达峰情景强化对电力、水泥、钢铁、陶瓷等高碳排放行业的限制,在2030年全社会就业岗位比如期达峰情景增加82 000人,但全省国内生产总值(GDP)比如期达峰情景减少424亿元,占届时全省GDP总量的0.242%。到2030年,率先达峰情景比如期达峰情景降低CO2排放7 610万t和节约能源消费2 535万t标准煤,其中碳减排和节能贡献部门主要来自电力、水泥、钢铁、石油开采、陶瓷行业,分别占全社会碳减排量和节能量的65.0%和74.3%。从投资与增加值、就业、碳排放的关系来看,建议大力发展电子信息、机械制造业这些单位投资增加值高、就业较高且单位投资碳排放较低的部门;鼓励对电力、水泥、钢铁、陶瓷单位投资增加值较低且单位投资碳排放较高的部门进行绿色化改造和行业提质增效。  相似文献   

13.
This paper describes a hybrid modelling approach to assess the future development of China's energy system, for both a “hypothetical counterfactual baseline” (HCB) scenario and low carbon (“abatement”) scenarios. The approach combines a technology-rich integrated assessment model (MESSAGE) of China's energy system with a set of sector-specific, bottom-up, energy demand models for the transport, buildings and industrial sectors developed by the Grantham Institute for Climate Change at Imperial College London. By exploring technology-specific solutions in all major sectors of the Chinese economy, we find that a combination of measures, underpinned by low-carbon power options based on a mix of renewables, nuclear and carbon capture and storage, would fundamentally transform the Chinese energy system, when combined with increasing electrification of demand-side sectors. Energy efficiency options in these demand sectors are also important.  相似文献   

14.
Homogeneous charge compression ignition (HCCI) combustion in diesel engines offers the potential of simultaneous low NOx and soot emissions. However, this is normally accompanied by high hydrocarbon (HC) levels in the exhaust and an early combustion phasing before the top‐dead‐center (TDC) that may drain out substantial amounts of fuel energy from the engine cycle. Exhaust gas recirculation is usually applied to delay the onset of combustion, thereby shifting the phasing of the heat release close to the TDC. Although the retarded phasing improves the engine energy efficiency, a significant increase in HC and carbon monoxide emissions will deteriorate the combustion efficiency. Therefore, an inherent trade‐off exists between the combustion phasing and the combustion efficiency that needs to be minimized for improved energy efficiency. In this work, both theoretical and experimental studies have been carried out to evaluate the combustion efficiency‐phasing (CEP) trade‐off. Engine tests have been conducted to analyze the losses in combustion (burning) and phasing efficiencies, and along with theoretical analyses, the CEP trade‐off has been evaluated in terms of a ‘coefficient of combustion inefficiency’ (CCI). The CCI quantitatively correlates the losses in combustion and phasing efficiencies and provides a reference for improving the combustion phasing of the HCCI operation vis‐à‐vis the combustibles in the exhaust. The focus of this research is to carry out a quantitative analysis of the energy efficiency of HCCI cycles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Transforming the energy system towards more sustainability can only be achieved through a combination of low-carbon energy, energy efficiency, and the coupling of energy sectors. In this context, the application of Power-to-Hydrogen concepts for managing demand, providing seasonal storage, and linking elements between different sectors has attracted significant interest during the last decade.Demonstration is a key first step towards large-scale market introduction. This paper presents the results of a review of 192 Power-to-X demo projects in 32 countries. Results show that the features of demonstrations have evolved significantly over the years: electrolysis capacity has increased, both for PEM and alkaline systems, and the potential for balancing and ancillary services is increasingly investigated via grid-connected demos. The scope of Hydrogen-to-X pathways has also evolved over the years, mainly to include industry applications. This work was carried out under the umbrella of Task 38 of the IEA Hydrogen Technology Collaboration Programme.  相似文献   

16.
叙述了建筑节能的概念、现状及其优势,分析了合理建筑节能设计及其施工管理,指出,建筑业是节能低碳最关键的领域之一,中国要走可持续发展道路,发展节能与绿色建筑刻不容缓。  相似文献   

17.
The industrial sector is one of the main energy consuming sectors in Thailand and accounted for 36.7% of total energy consumption in 2005. The trend of rising energy prices and tougher competition increases the demand to improve energy efficiency in Thai industry. However, the existence of various barriers often hinders the realization of even some cost-effective energy efficiency measures. In an attempt to investigate key barriers to and drivers for energy efficiency improvement in Thai industry, this study found that the most important barrier expressed by both the textile and cement industries studied as well as experts interviewed is that the management is concerned about production and other matters rather than energy efficiency. Reducing product cost by reducing energy cost is found to be the main driver for energy efficiency investment. Using a conceptual industrial energy efficiency policy framework this study shows how various energy efficiency policies can affect the process of decision-making for and investment in energy efficiency in industry.  相似文献   

18.
DES/CCHP系统和区域能源利用效率计算方法及影响因素分析   总被引:2,自引:1,他引:1  
华贲 《中外能源》2012,17(3):18-23
天然气分布式冷热电联供(DES/CCHP)是中国“十二五”期间提高能效、保障经济发展的重要战略举措,其评价指标是能源利用效率、经济效益、碳排放.DES/CCHP实现高效的技术关键包括:把所有终端用能集成为一个“总能源系统”;科学用能,核心是尽可能减小每一级用能的(火用)损耗;尽可能安排多个冷、热、电、汽终端用户时空分布的最优组合;需要较大的系统规模.新区DES/CCHP系统能效是决定区域总能效的最主要因素,两者的区别在于交通用能、其他用能和外来电力,可在取得相应数据基础上计算得出.计算能源利用效率的一般公式是:能效=终端耗用各种能源总量之和/耗用的一次能源总量,CCHP能效计算的分子必须是全部终端用能,必须按照8650h/a不同负荷逐时累加求和计算,不能取设计工况数据;分母必须全部折算成一次能源.在计算出区域规划的能效、总能耗和一次能源构成后,便可按照规划目标年度的GDP数据,推算出能源强度、碳强度和二氧化碳排放量等低碳发展指标.影响区域能源利用效率的因素包括外部因素——天然气价格与上网电价,客观因素——产业格局、气候条件和实际进展与规划格局的差异,以及主观因素等,其中外部、客观因素是决定能效的硬性约束.  相似文献   

19.
基于不同类型主体功能区的发展定位与碳排放驱动要素分解,提出有针对性的区域差异化低碳发展路径是推进主体功能区可持续发展的重要内容。基于调研资料,分析了广东省各主体功能区自2010年以来的碳排放演变特征,从人口效应、经济效应、能源强度效应、产业结构效应以及碳排放因子效应五个因素对造成不同主体功能区碳排放差异的原因进行了分析。要素分解发现,经济规模和人口数量增长对优化开发区碳排放量增长的贡献率最大;产业结构的优化从2012年开始成为使优化开发区碳排放量降低的影响因素,对重点开发区和生态发展区碳排放量降低的作用仍不明显;产业能源强度变动均使三类功能区碳排放量降低,但是贡献率呈现明显差异。建议:(1)加快发展优化开发区服务业,积极推动实施居民碳排放管理;(2)重点开发区应以提高能效和推进低碳技术为主实施低碳转型;(3)生态发展区要大力推广清洁能源,促使农业低碳化发展。  相似文献   

20.
Exergy has been seen a key component for a sustainable society, and in the recent years exergy analysis has been widely used in the design, simulation and performance evaluation of thermal and thermo chemical systems. A particular thermo dynamical system is the society of a country, while the energy utilization of a country can be assessed using exergy analysis to gain insights into its efficiency and potential for improvements.Energy and exergy utilization efficiencies in the Turkish industrial sector (TIS) over the period from 1990 to 2003 are reviewed and evaluated in this study. Energy and exergy analyses are performed for eight industrial modes, namely iron–steel, chemical–petrochemical, petrochemical–feedstock, cement, fertilizer, sugar, non-metal industry, other industry, while in the analysis the actual data are used. Sectoral energy and exergy analyses are conducted to study the variations of energy and exergy efficiencies for each subsector throughout the years studied, and these heating and overall energy and exergy efficiencies are compared for the eight subsectors. The chemical and petrochemical subsector, and the iron and steel subsector appear to be the most energy and exergy efficient sectors, respectively. The energy utilization efficiencies for the Turkish overall industrial sector range from 63.45% to 70.11%, while the exergy utilization efficiencies vary from 29.72% to 33.23% in the analyzed years. Exergetic improvement potential for this sector is also determined to be 681 PJ in 2003, with an average increase rate of 9.5% annually for the analyzed years. It may be concluded that the methodology used in this study is practical and useful for analyzing sectoral and subsectoral energy and exergy utilization to determine how efficient energy and exergy are used in the sector studied. It is also expected that this study will be helpful in developing highly applicable and productive planning for energy policies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号