首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Polypyrrole and its nanocomposites were obtained by chemical polymerization by using anhydrous ferric chloride as an oxidant in the presence of dodecylbenzensulfonate and poly(vinyl alchohol) as surfactants and iron (III) oxide nanoparticles in aqueous media. The products were characterized, such as morphology, chemical structure, and crystalline nature, by using analysis by scanning electron microscope, Fourier‐transform infrared spectrometry, and X‐ray diffraction. The results indicated that sodium dodecylbenzene‐sulfonate, poly(vinyl alcohol), and Fe2O3 nanoparticles influenced the properties of products. Scanning electron microscope analysis results indicated that when additives were added to the pyrrole matrix, the size of the product decreased and homogeneity increased. Fourier‐transform infrared spectrometry confirmed that nanocomposites formed in the presence of surfactant. X‐ray diffraction pattern analysis confirmed the presence of Fe2O3 nanoparticles in the nanocomposite matrix. J. VINYL ADDIT. TECHNOL., 22:362–367, 2016. © 2014 Society of Plastics Engineers  相似文献   

2.
Two superparamagnetic and heat resistant xanthene based poly(ether-imide) nanocomposites were successfully synthesized. Field emission scanning electron microscopy, transmission electron microscope, X-ray diffraction, thermal gravimetric analysis, vibrating sample magnetometer, Energy-dispersive X-ray spectroscopy and Fourier-transform infrared (FTIR) techniques were used for studying the morphology, crystalline phase, thermal stability and magnetization properties of the nanocomposites. The neat form of the corresponding poly(ether-imide) was also prepared by thermal imidization method and its structure was confirmed by FTIR, proton nuclear magnetic resonance (1H NMR), UV–Vis and photoluminescence (PL) spectroscopies. In order to investigate the effects of modifying the surface of Fe3O4 nanoparticles on thermal properties of the nanocomposites, the surface of Fe3O4 nanoparticles was coated with SiO2 and polysuccinimide (PSI), sequentially. Then, both the unmodified Fe3O4 and surface-modified Fe3O4 (Fe3O4@SiO2–PSI) nanoparticles were used as fillers for the polymer matrix. According to the results, the prepared nanocomposites were superparamagnetic and showed higher thermal stability in comparison to the neat poly(ether-imide). Furthermore, poly(ether-imide)/Fe3O4@SiO2–PSI (PIEN 10b) nanocomposite showed higher thermal stability and dispersed better in the polymer matrix [in comparison to poly(ether-imide)/Fe3O4 (PIEN 10 a)] due to the presence of imide groups and high hydroxyl content of the functional Fe3O4 nanoparticles which caused high interactions between poly(ether-imide) and functional Fe3O4. Furthermore, the presence of methyl, ether and bulky xanthene groups in the poly(ether-imide(backbone improved the solubility of the neat polymer in organic solvents. These properties can be very helpful for extending new applications of poly(ether-imide)s.  相似文献   

3.
A novel ceramic membrane anti‐solvent crystallization (CMASC) method was proposed to prepare Fe2O3/AP nanocomposites with core‐shell structure. For the preparation of Fe2O3/AP nanocomposites, several key advantages of the CMASC method are as follows. Firstly, both well‐dispersed Fe2O3 nanoparticles and the superfine AP preparation can be achieved at one step. Secondly, no non‐component of solid propellant was involved in this composite process. Thirdly, the size and morphology of Fe2O3/AP nanocomposites can be effectively controlled by using the ceramic membrane with regular pore structure as feeding template. The morphology and structure of Fe2O3/AP nanocomposites were characterized by inductively coupled plasma spectrophotometry (ICP), IR spectroscopy, SEM, and HRTEM. The results verified that the size and morphology of Fe2O3/AP nanocomposites are controllable, and the dispersion of Fe2O3 nanoparticles is greatly improved in Fe2O3/AP nanocomposites. Moreover, the thermal decomposition of the as‐prepared Fe2O3/AP nanocomposites was measured with TG‐DSC. The results showed that the Fe2O3 nanoparticles in Fe2O3/AP nanocomposites exhibit better catalytic activity on the thermal decomposition of AP. In addition, the mechanism was also discussed.  相似文献   

4.
The main goal in this work was to prepare and characterize a kind of novel superparamagnetic poly(ε-caprolactone)/Fe3O4@graphene oxide (PCL/Fe3O4@GO) nanocomposites via facile in situ polymerization. Fabrication procedure included two steps: (1) GO nanosheets were decorated with Fe3O4 nanoparticles by an inverse co-precipitation method, which resulted in the production of the magnetite/GO hybrid nanoparticles (Fe3O4@GO); (2) incorporation of Fe3O4@GO into PCL matrix through in situ polymerization afforded the magnetic nanocomposites (PCL/Fe3O4@GO). The microstructure, morphology, crystallization properties, thermal stability and magnetization properties of nanocomposites were investigated with various techniques in detail. Results of wide-angle X-ray diffraction showed that the incorporation of the Fe3O4@GO nanoparticles did not affect the crystal structure of PCL. Images of field emission scanning electron microscope and transmission electron microscopy showed Fe3O4@GO nanoparticles evenly spread over PCL/Fe3O4@GO nanocomposites. Differential scanning calorimeter and polar optical microscopy showed that the crystallization temperature increased and the spherulites size decreased by the presence of Fe3O4@GO nanoparticles in the nanocomposites due to the heterogeneous nucleation effect. Thermogravimetric analysis indicated that the addition of Fe3O4@GO nanoparticles reduced the thermal stability of PCL in the nanocomposites. The superparamagnetic behavior of the PCL/Fe3O4@GO nanocomposites was testified by the superconducting quantum interference device magnetometer analysis. The obtained superparamagnetic nanocomposites present potential applications in tissue engineering and targeted drug delivery.  相似文献   

5.
An optically active poly(amide‐imide) (PAI) was synthesized from the polymerization reaction of N,N′‐(Pyromellitoyl)‐bis‐l ‐alanine diacid chloride with 2,5‐diaminotoluene. The obtained inorganic metal oxide nanocomposites composed of PAI/nanostructured hematite (α‐Fe2O3) were synthesized through ultrasonic irradiation. The resulting nanocomposites were characterized by Fourier transform infrared spectroscopy, powder X‐ray diffraction, transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The TEM results indicated that the nanoparticles were dispersed homogeneously in PAI matrix on nanoscale. TGA confirmed that the heat stability of the nanocomposites was improved in the presence of α‐Fe2O3 nanoparticles. POLYM. COMPOS., 37:1805–1811, 2016. © 2014 Society of Plastics Engineers  相似文献   

6.
Hydrophilic surface of α-Al2O3 nanoparticles was treated with thiamine as a green modifier for better compatibility with poly(vinyl alcohol) matrix. In this regard, poly(vinyl alcohol)/α-Al2O3-vitamin B1 nanocomposites with different ratios of modified α-Al2O3 (3, 5, and 7?wt%) were prepared through ultrasonic irradiation and their properties were compared with the pure poly(vinyl alcohol). Many techniques were used to study the properties of poly(vinyl alcohol)/α-Al2O3-vitamin B1 nanocomposites. Morphology images of poly(vinyl alcohol)/α-Al2O3-vitamin B1 nanocomposites showed the good dispersion of the α-Al2O3 nanoparticles in poly(vinyl alcohol) matrix in nanometer-scale. The results demonstrated that poly(vinyl alcohol)/α-Al2O3-vitamin B1 nanocomposites give better thermal stability, strain, and E-modulus than the pure poly(vinyl alcohol.  相似文献   

7.
涂志江  张宝林  冯凌云  赵方圆 《化工学报》2012,63(12):4089-4095
为了获得能够在水中稳定分散,具有广泛应用前景的磁性纳米粒子,以不同分子量的聚乙烯吡咯烷酮(PVP)作为修饰剂,在聚乙二醇(PEG)中高温热分解乙酰丙酮铁(Fe(acac)3)制备了纳米Fe3O4粒子。采用X射线粉末衍射仪(XRD)、透射电镜(TEM)、高分辨透射电镜(HRTEM)、超导量子干涉仪(SQUID)、热重分析仪(TGA)、傅里叶变换红外光谱仪(FT-IR)、纳米粒度与zeta电位分析仪对样品进行了表征,并对样品在生理盐水和生理缓冲液中的稳定性进行了研究,结果表明:制备的纳米Fe3O4粒子具有高的结晶度以及单分散性,在300 K下,具有超顺磁性和较高的饱和磁化强度;PEG和PVP共同修饰于纳米Fe3O4粒子表面,为纳米Fe3O4粒子提供了良好的水分散性;制备的纳米Fe3O4粒子在生理盐水和多种生理缓冲液中能够高度溶解并稳定地分散。水中的纳米Fe3O4粒子表面呈电中性,表面修饰层的空间位阻效应是所制备的纳米粒子在水溶液中高分散的原因。  相似文献   

8.
Maghemite (γ‐Fe2O3)‐poly(methyl methacrylate) (PMMA) nanocomposites were prepared by grafting 3‐(trimethoxy‐silyl) propyl methacrylate on the surface of maghemite nanoparticles, this process being followed by methyl methacrylate radical polymerization. Three different hybrids with 0.1, 0.5, and 2.5 wt% of maghemite nanoparticles were studied. The results indicate that these nanocomposites consist of a homogeneous PMMA matrix in which maghemite nanoparticles with a bimodal size distribution are embedded. The existence of covalent bonding between silane monomers and atoms on the maghemite surface was evidenced. AFM images showed a clear increase in surface roughness for increasing maghemite content. The thermal stability of PMMA‐maghemite nanocomposites is higher than that of pure PMMA and increases for increasing maghemite content. The results of our theoretical studies indicate that the electron density in the maghemite nanoparticle is not homogenous, the low electron density volumes being supposed to be radical trappers during PMMA decomposition, thus acting as a thermal stabilizer. POLYM. COMPOS., 51–60, 2016. © 2014 Society of Plastics Engineers  相似文献   

9.
Elastomer nanocomposites reinforced with carbon nanofiber (CNF) decorated with metal nanoparticles exhibit excellent thermal, mechanical, and magnetic properties with low volume fraction of the reinforcement. Generally, metal nanoparticles are used to modify the surface of CNF, to improve their dispersion and contact resistance in the polymer matrix. In this study, Fe2O3 metal nanoparticles were decorated on CNF by electrostatic attraction via a green and facile solution‐based method. Interestingly, the CNF decorated with Fe2O3 (CNF‐Fe2O3)/elastomer improved both the tensile strength and the fatigue property of plain CNF/elastomer by as much as 57.2% and 27.2%, respectively. Moreover, the CNF‐Fe2O3/elastomer exhibited superior thermal conductivity, a twofold enhancement compared with carbon fibers. The elastomer nanocomposites consisting of CNF‐Fe2O3 also exhibited enhanced magnetic properties due to synergies between the Fe2O3 nanoparticles and the CNF. The elastomer nanocomposites prepared with CNF‐Fe2O3 will open significant new opportunities for preparing advanced elastomer nanocomposites for future engineering applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45376.  相似文献   

10.
A novel magnetic semi‐IPN hydrogel based on xylan and poly(acrylic acid) was prepared, and the prepared hydrogels had excellent thermal stability, magnetic‐, and pH‐ sensitive properties. The physical‐chemical properties of the prepared hydrogels depended on the contents of xylan and Fe3O4 nanoparticles. The thermal stability of the hydrogels enhanced as the contents of xylan and Fe3O4 nanoparticles increased; however, the equilibrium swelling ratio decreased with increasing the contents of Fe3O4 nanoparticles and xylan. The interconnected pore channels were formed in the hydrogels and the amount of the channels increased with an increase in xylan content. The prepared hydrogels had a super‐paramagnetic property, and the magnetization increased with an increase in the content of Fe3O4 nanoparticles. The superior characteristics of the xylan/PAAc magnetic semi‐IPN hydrogel would expand its applications in drug delivery and magnetic separation aspects. POLYM. COMPOS., 36:2317–2325, 2015. © 2014 Society of Plastics Engineers  相似文献   

11.
In this paper, an excellent new hybrid coating including poly(methyl methacrylate) (PMMA), polyaniline (PANI), and magnetite nanoparticles (Fe3O4) was obtained. Fe3O4 nanoparticles were synthesized using coprecipitation method, and then magnetite nanoparticles have been dispersed into the PANI to increase compatibility with PMMA. Also, PANI/Fe3O4 nanocomposites were synthesized through in situ emulsion polymerization, and then PMMA/PANI/Fe3O4 hybrid coating was successfully synthesized using batch emulsion polymerization method. Structure, morphology and thermal stability of the samples were characterized using Fourier transform infrared, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and thermal gravimetric analysis (TGA). The synthesized samples were well distributed with an average diameter smaller than 20?nm. Microscopy and X-ray photoelectron spectroscopy results illustrated a great dispersion of magnetite nanoparticles in hybrid matrix. Moreover, the TGA results demonstrated that the PMMA/PANI/Fe3O4 hybrid coating nanoparticle is an excellent hybrid coating with high thermal resistance.  相似文献   

12.
Magnetic conducting nanoparticles with reactive functional groups are attractive materials for applications in electromagnetic interference shielding, magneto‐optical storage, biomedical sensing, gas and humidity sensors, flexible electronics etc. The objective of this work was to prepare carboxyl functionalized polypyrrole (PPy) nanocomposite particles having good magnetic properties. Electromagnetic PPy nanostructures, abbreviated as PPy/γ‐Fe2O3, were first prepared by a chemical one‐step method. In this reaction process FeCl3 is used as an oxidant for the polymerization of pyrrole and as a source of Fe3+ for the formation of γ‐Fe2O3. The formation of γ‐Fe2O3 is also aided by the initial presence of Fe2+, and p‐toluenesulfonic acid (p‐TSA) acted as a dopant. The effects of different stabilizers on the stability and morphology of PPy/γ‐Fe2O3 particles were evaluated. The presence of citric acid/sodium dodecyl sulfate during chemical oxidative polymerization produced a relatively stable PPy/γ‐Fe2O3 colloidal emulsion. PPy/γ‐Fe2O3/poly(methylmethacrylate‐methacrylic acid) (PPy/γ‐Fe2O3/P(MMA‐MAA)) nanocomposite polymer particles were then prepared by the seeded copolymerization of MMA and MAA in the presence of magnetic PPy/γ‐Fe2O3 nanocomposite seed particles. The structure and morphology of the prepared nanocomposites were confirmed by different instrumental techniques such as Fourier transform IR spectroscopy, UV?visible spectroscopy, electron micrographs, XRD and X‐ray photoelectron spectroscopy. The electrical and magnetic properties were also investigated. The carboxyl functional electromagnetic PPy nanocomposite polymer particles should be useful for the immobilization of drugs or biomolecules to design electrically stimulated drug delivery systems for modulating the activities of nerve, cardiac, skeletal muscle and bone cells. © 2016 Society of Chemical Industry  相似文献   

13.
A new negative temperature coefficient of resistor (NTCR) thermistors based on nitrile butadiene rubber/magnetite (NBR/Fe3O4) nanocomposites were successfully fabricated by conventional roll milling technique. X‐ray diffraction and transmission (TEM) analysis showed that the product is mainly magnetite nanoparticles with diameter of 10‐13 nm. The microstructure of (NBR/Fe3O4) nanocomposites were examined by scanning electron microscopy (SEM) and FTIR spectroscopy. The dispersion of magnetite nanoparticles in the NBR rubber matrix and interfacial bonding between them were rather good. The thermal stability of nanocomposites was also obviously improved with the inclusion of the magnetite nanoparticles. The thermal conductivity, thermal diffusivity and specific heat of nanocomposites were investigated. The electrical conductivity of the NBR/Fe3O4 increases with the rise in temperature exhibiting a typical negative temperature coefficient of resistance (NTCR) behavior like a semiconductor. The nature of the temperature variation of electrical conductivity and values of activation and hopping energy, suggest that the transport conduction process is controlled by hopping mechanism. Values of characteristics parameters of the thermistors like thermistor constant, thermistor sensitivity and thermistor stability is quite good for practical application as NTCR devices at high temperature. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Nanocomposites of iron oxide (Fe3O4) with a sulfonated polyaniline, poly(aniline‐co‐aminonaphthalenesulfonic acid) [SPAN(ANSA)], were synthesized through chemical oxidative copolymerization of aniline and 5‐amino‐2‐naphthalenesulfonic acid/1‐amino‐5‐naphthalenesulfonic acid in the presence of Fe3O4 nanoparticles. The nanocomposites [Fe3O4/SPAN(ANSA)‐NCs] were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, elemental analysis, UV–visible spectroscopy, thermogravimetric analysis (TGA), superconductor quantum interference device (SQUID), and electrical conductivity measurements. The TEM images reveal that nanocrystalline Fe3O4 particles were homogeneously incorporated within the polymer matrix with the sizes in the range of 10–15 nm. XRD pattern reveals that pure Fe3O4 particles are having spinel structure, and nanocomposites are more crystalline in comparison to pristine polymers. Differential thermogravimetric (DTG) curves obtained through TGA informs that polymer chains in the composites have better thermal stability than that of the pristine copolymers. FTIR spectra provide information on the structure of the composites. The conductivity of the nanocomposites (~ 0.5 S cm?1) is higher than that of pristine PANI (~ 10?3 S cm?1). The charge transport behavior of the composites is explained through temperature difference of conductivity. The temperature dependence of conductivity fits with the quasi‐1D variable range hopping (quasi‐1D VRH) model. SQUID analysis reveals that the composites show ferromagnetic behavior at room temperature. The maximum saturation magnetization of the composite is 9.7 emu g?1. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

15.
Stabilized and dispersed superparamagnetic porous nanogels based on sodium acrylate (AA‐Na) and acrylamide (AM) in a surfactant‐free aqueous system were synthesized via solution polymerization at room temperature. The formation of magnetite nanoparticles was confirmed and their properties characterized using Fourier transform infrared spectroscopy. Extensive characterization of the magnetic polymer particles using transmission electron microscopy (TEM), dynamic light scattering and zeta potential measurements revealed that Fe3O4 nanoparticles were incorporated into the shells of poly(AM/AA‐Na). The average particle size was 5–8 nm as determined from TEM. AM/AA‐Na nanoparticles with a diameter of about 11 nm were effectively assembled onto the negatively charged surface of the as‐synthesized Fe3O4 nanoparticles via electrostatic interaction. Crosslinked magnetite nanocomposites were prepared by in situ development of surface‐modified magnetite nanoparticles in an AM/AA‐Na hydrogel. Scanning electron microscopy was used to study the surface morphology of the prepared composites. The morphology, phase composition and crystallinity of the prepared nanocomposites were characterized. Atomic force microscopy and argon adsorption–desorption measurements of Fe3O4.AM/AA indicated that the architecture of the polymer network can be a hollow porous sphere or a solid phase, depending on the AA‐Na content. © 2013 Society of Chemical Industry  相似文献   

16.
In this investigation, citric acid (CA) and ascorbic acid (AA) as biocompatible and biodegradable coupling agents were grafted onto surface of Al2O3 nanoparticles (NP)s via ultrasonic process. Then, various percentages of the modified Al2O3 NP were immobilized onto matrix of pristine poly(vinyl alcohol) (PVA) and ameliorated their morphology, mechanical and thermal properties. Transmission electron microscopy photographs were valid criterion for characterizing morphology of Al2O3 with CA and AA. The improvement of the mechanical properties revealed good dispersion of the modified Al2O3 into the matrix of PVA. Finally, thermogravimetric analysis curves displayed an increase in the thermal stability of the nanocomposites upon grafting of the modified Al2O3. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44561.  相似文献   

17.
A sonochemical technique is used for in situ coating of iron oxide (Fe3O4) nanoparticles on outer surface of MWCNTs. These Fe3O4/MWCNTs were characterized using a high‐resolution transmission electron microscope (HRTEM), X‐ray diffraction, and thermogravimetric analysis. The as‐prepared Fe3O4/MWCNTs composite nanoparticles were further used as reinforcing fillers in epoxy‐based resin (Epon‐828). The nanocomposites of epoxy were prepared by infusion of (0.5 and 1.0 wt %) pristine MWCNTs and Fe3O4/MWCNTs composite nanoparticles. For comparison purposes, the neat epoxy resin was also prepared in the same procedure as the nanocomposites, only without nanoparticles. The thermal, mechanical, and morphological tests were carried out for neat and nanocomposites. The compression test results show that the highest improvements in compressive modulus (38%) and strength (8%) were observed for 0.5 wt % loading of Fe3O4/MWCNTs. HRTEM results show the uniform dispersion of Fe3O4/MWCNTs nanoparticles in epoxy when compared with the dispersion of MWCNTs. These Fe3O4/MWCNTs nanoparticles‐infused epoxy nanocomposite shows an increase in glass transition (Tg) temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
Graft copolymer nanocomposites based on cashew gum and poly(acrylamide) with different concentrations of nano‐iron‐oxide particles (Fe3O4) have been prepared by an in situ polymerization method. The characterization of graft copolymer composite was carried out by FTIR, UV, XRD, SEM, DSC, and TGA, electrical conductivity, and magnetic property [vibrational sample magnetometer (VSM)] measurements. The shift in the spectrum of UV and FTIR peaks shows the intermolecular interaction between metal oxide nanoparticles and the graft copolymer system. The spherically shaped particles observed from the SEM images clearly indicating the uniform dispersion of nanoparticles within the graft copolymer chain. The XRD studies revealed that the amorphous nature of the graft copolymer decreases by the addition of Fe3O4 nanoparticles. The glass transition temperature studied from DSC increases with increase in concentration of metal oxide nanoparticles. Thermal stability of composite was higher than the pure graft copolymer and thermal stability increases with increase in content of nanoparticles. Electrical properties such as AC conductivity and dielectric properties of the composites increased with increase in concentration of metal oxide nanoparticles. The magnetic property of graft copolymer nanocomposites shows ferromagnetic and supermagnetism and the saturation of magnetism linearly increased with increasing the Fe3O4 content in the polymer composite. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43496.  相似文献   

19.
Magnetic Fe3O4–poly(aniline‐coo‐anthranilic acid) nanoparticles were prepared by a novel and simple method: anthranilic acid assisted polymerization. The synthetic strategy involved two steps. First, Fe3O4 nanoparticles capped by anthranilic acid were obtained by a chemical precipitation method, and then the aniline and oxidant were added to the modified Fe3O4 nanoparticles to prepare well‐dispersed Fe3O4–poly(aniline‐coo‐anthranilic acid) nanoparticles. Fe3O4–poly(aniline‐coo‐anthranilic acid) nanoparticles exhibited a superparamagnetic behavior (i.e., no hysteresis loop) and high‐saturated magnetization (Ms = 21.5 emu/g). The structure of the composite was characterized by Fourier‐transform infrared spectra, X‐ray powder diffraction patterns, and transmission electron microscopy, which proved that the Fe3O4–poly(aniline‐coo‐anthranilic acid) nanoparticles were about 20 nm. Moreover, the thermal properties of the composite were evaluated by thermogravimetric analysis, and it showed excellent thermal stability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1666–1671, 2006  相似文献   

20.
The aim of the present work was to prepare microgel nanocomposites based on silver and magnetite to apply as adsorbents and heterogeneous catalysts for removal of methylene blue (MB) cationic dye from aqueous solution. For this, 2‐acrylamido‐2‐methylpropane sulfonic acid (AMPS) and acrylamide (AAm) monomers were used to prepare AMPS/AAm microgel based on the emulsion technique. Ag and Fe3O4 nanoparticles were embedded into the AMPS/AAm microgel using the in situ technique. Their particle sizes, surface charges, crystalline lattice structure, morphology, magnetic properties and thermal stability were investigated. The AMPS/AAm hydrogel nanocomposites were used as an adsorbent to remove MB dye. The AMPS/AAm microgel nanocomposites were tested as catalysts to reduce MB and degrade its chemical structure with heterogeneous Fenton oxidation using Ag and Fe3O4 nanocomposites, respectively. This study presents promising data as the prepared materials used as adsorbents and catalysts show competitive features compared with the data presented in the literature. © 2019 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号