首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
稀土La对半固态A356铝合金凝固组织的影响   总被引:1,自引:0,他引:1  
利用Al-La中间合金对A356铝合金进行了细化处理,并用低过热度浇注技术制备了半固态A356铝合金浆料,研究了细化处理对半固态A356铝合金初生α相形貌和尺寸的影响.研究结果表明,细化处理的A356铝合金经低过热度浇注可制备具有颗粒状和蔷薇状初生α相的半固态浆料,稀土La可显著改善半固态A356铝合金中初生α相的晶粒尺寸和颗粒形貌.探讨了稀土La对半固态A356铝合金初生α相的细化机理.  相似文献   

2.
利用低过热度浇注和等温保温技术制备了半固态A356-Sc铝合金浆料,研究了Sc对所制备的半固态A356铝合金初生α相形貌和尺寸的影响。结果表明:细化处理的半固态A356-Sc铝合金经低过热度浇注和等温保温可制备具有球状和颗粒状初生α相的浆料,稀土Sc可显著改善A356铝合金中初生α相的尺寸和形貌。获得了制备半固态A356-Sc合金浆料合适的工艺条件:Sc加入量为0.6 mass%,保温温度为630℃,保温时间为200 s,此时,初生α相的等效圆直径达到36.48μm,平均形状因子为0.85。探讨了Al-Sc共晶反应对半固态A356铝合金初生α相细化机理。  相似文献   

3.
利用Al-La稀土中间合金对液态A356铝合金进行了细化处理,并用低温浇注技术制备了半固态A356铝合金浆料,研究了细化处理对所制备半固态A356铝合金的初生α-Al相形貌和尺寸的影响。结果表明,细化处理的A356铝合金经低温浇注可制备具有颗粒状和蔷薇状初生α-Al相的半固态浆料,稀土La可显著改善半固态A356铝合金中初生α-Al相的晶粒尺寸和颗粒形貌。探讨了稀土La对半固态A356铝合金的初生α-Al相细化机理。  相似文献   

4.
采用行波电磁搅拌和低过热度浇注复合制备工艺,成功制备出初生α-Al为球状的较大尺寸A356铝合金半固态浆料.研究了浇注温度、搅拌频率和搅拌功率对A356铝合金半固态浆料组织的影响.结果表明,随着浇注温度的降低,半固态A356铝合金组织中的初生α-Al更圆整.当搅拌频率达到或高于10Hz时,半固态A356铝合金浆料中的组织比较理想.当电磁搅拌功率增大时,半固态A356铝合金熔体中的蔷薇状初生α-Al受到更剧烈的附加温度起伏而使枝晶根部熔断,形成更多更圆整的球状初生相.因此,在630℃浇注、搅拌频率为10Hz和搅拌功率为1.72kW下,能制备出更圆整、细小的初生α-Al.  相似文献   

5.
高效节能制备半固态合金浆料的新工艺   总被引:2,自引:2,他引:0  
应用高效节能的工艺制备了半固态合金浆料,该工艺采用了低过热度浇注和弱电磁搅拌。研究了主要工艺参数对半固态合金浆料的影响。结果表明,低过热度浇注和弱电磁搅拌工艺可制备满足流变成形所需的半固态合金浆料,浇注温度和搅拌功率显著影响初生α-Al晶粒的形貌和尺寸。通过对合金熔体的弱电磁搅拌,可适当提高低过热度浇注的温度,实现高效和节能的目的。  相似文献   

6.
利用行波电磁搅拌和低过热度浇注复合制备工艺成功地制备了A356半固态流变浆料。研究了浇注温度、搅拌功率和搅拌时间对A356铝合金的半固态浆料的影响。研究表明,该工艺可制备出符合流变成形所需的A356铝合金半固态浆料,浇注温度在液相线附近,搅拌功率越大,搅拌时间大于6s制备的A356半固态流变浆料中的初生α-Al越圆整,尺寸越细小。最佳工艺参数:搅拌温度为630℃,搅拌功率为1.2kW,搅拌时间为6s。  相似文献   

7.
半固态ZL201A铝合金浆料的制备   总被引:2,自引:0,他引:2  
利用低过热度浇注和弱电磁搅拌方法制备了半固态ZL201A铝合金浆料,浇注温度分别为678、663、648℃,利用光学显微镜观察了不同条件下的浆料组织。试验结果表明,随着浇注温度的降低,半固态ZL201A铝合金浆料内部组织中的初生α-Al由蔷薇状向球状转变,晶粒尺寸逐渐变小,分布更均匀。同时,浆料边缘和底部组织中的初生α-Al的形貌由粗大的枝晶向蔷薇状转变。对于半固态ZL201A铝合金浆料的制备,较佳的浇注温度为663℃。电磁搅拌均匀了ZL201A铝合金液的温度场,加大了同时凝固的区域,细化了初生α-Al晶粒;同时结晶潜热的集中释放有助于蔷薇状初生α-Al的根部熔断,加速了球状初生α-Al的形成。  相似文献   

8.
采用低过热度浇注和弱电磁搅拌制备浆料技术制备半固态AlSi7Mg合金浆料,研究了弱搅拌功率对合金浆料初生相α-Al形貌的影响以及浆料组织的径向分布.研究结果表明, 在低过热度浇注和弱电磁搅拌条件下,当AlSi7Mg合金液在浇注温度为630 ℃、搅拌功率为0.36 kW时可制备出初生α-Al相形貌呈小而圆整的球状晶粒、组织分布均匀、直径为127 mm的AlSi7Mg合金浆料;在低过热度浇注和弱电磁搅拌条件下,适当提高搅拌功率可改善初生α-Al相形貌,但当搅拌功率提高到一定程度,再增大搅拌功率,初生α-Al相形貌并没有得到进一步改善;从半固态AlSi7Mg合金浆料组织的径向分布看,由边部到心部,浆料的组织形貌从枝晶组织向蔷薇状组织再向球状组织演化.  相似文献   

9.
节能电磁搅拌对半固态A356铝合金初生相的影响   总被引:1,自引:0,他引:1  
利用自制电磁搅拌装置在低过热度浇注工艺下制备了半固态A356铝合金浆料,研究了电磁搅拌过程对半固态A356铝合金初生相的影响。结果表明,利用自制的电磁搅拌装置能够制备满足流变成型需要的半固态A356铝合金浆料;通过试验研究,获得了合适的制备工艺参数,并且节省能耗。  相似文献   

10.
采用低过热度浇注和弱行波电磁搅拌复合制备工艺制备较大容量的半固态AlSi7Mg合金浆料,探讨了电磁搅拌功率和频率对较大容量半固态AlSi7Mg合金浆料组织中的初生α-Al形貌和分布的影响规律。试验结果表明,在低过热度浇注和弱行波电磁搅拌条件下,当浇注温度为630℃、搅拌功率为1.52kW、电磁搅拌频率为5Hz、搅拌时间为8s时,可制备出初生α-Al形貌呈小而圆整的球状晶粒、组织分布均匀、较大容量的半固态AlSi7Mg合金浆料。在低过热度浇注和弱行波电磁搅拌条件下,当浇注温度为630℃、电磁搅拌频率为5Hz,,适当提高电磁搅拌功率可改善初生a-Al的形貌,组织分布比较均匀,但当搅拌功率超过1.52kW时,初生α-Al形貌并没有得到进一步的改善,初生α-Al形貌大部分为球状,组织分布也比较均匀。在低过热度浇注和弱行波电磁搅拌条件下,当浇注温度为630℃、电磁搅拌功率为1.27kW,适当提高电磁搅拌频率可改善初生α-Al的形貌,但当电磁搅拌频率超过10Hz时,初生α-Al形貌并没有得到明显改善,初生α-Al形貌大部分以球状为主,组织分布比较均匀。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
吴玉梅  熊晓云  靳蓉  孙敬民  杨林  罗晓星 《金属学报》2005,10(10):1100-1103
目的: 观察本实验室合成的一种治疗阿尔茨海默氏症(AD)的药物(1-二甲基磷酰基-2, 2, 2 -三氯)-乙基-1-醇烟酸醋(NMF),对体外培养的皮层神经细胞活性的影响以及对海人藻酸(KA)所致的神经损伤的保护作用。方法: 采用体外培养皮层神经元的方法,解剖分离 15 d胚胎小鼠皮层神经细胞, 接种于 96孔板,48 h 后加药并培养 72 h,以 MIT 法 观察 NMF 对小鼠皮层神经细胞活性的影响;同时将接种于 24 孔板的细胞预先给予 NMF,d 3 时加或不加KA处理后,以台盼蓝染色鉴别并计数死、活细胞,可得出细胞的存活率。结果: NMF 明显促进胎鼠皮层神经元活性,其中 NMF1、0. 1、10nmol·L-1促进神经元活性增殖率分别高达 34.7%、37.4%、36. 7%, NMF 明显促进正常胎鼠皮层神经元存活卒,与对照组比较,10nmol·L-1 NMF 对皮层神经元的存活率分别提高 39.3%、73.5%。 NMF能显著 对抗 KA 所致的神经元损伤,与 KA 损伤组相比, NMF0.1、10、10nmol·L-1对损伤皮层神经元的保护率分别为 77.30%、80.10%、84.15%。结论: NMF 明 显促进胎鼠皮层神经元的洁性、提高正常皮层神经元,的存活卒,并能有效地保护KA所致的神经元损伤,提示 NMF 是一种很有潜力的治疗 AD 的药物。  相似文献   

13.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

14.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

15.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

16.
Coherent second phase often exhibits anisotropic morphology with specifi c orientations with respect to both the second and the matrix phases. As a key feature of microstructure, the morphology of the coherent particles is essential for understanding the second-phase strengthening eff ect in various industrial alloys. This letter reports anisotropic growth of coherent ferrite from austenite matrix in pure iron based on molecular dynamics simulation. We found that the ferrite grain tends to grow into an elongated plate-like shape, independent of its initial confi guration. The fi nal shape of the ferrite is closely related to the misfi t between the two phases, with the longest direction and the broad facet of the plate being, respectively, consistent with the best matching direction and the best matching plane calculated via the Burgers vector content(BVC) method. The strain energy calculation in the framework of Eshelby's inclusion theory verifi es that the simulated orientation of the coherent ferrite is energetically favorable. It is anticipated that the BVC method will be applicable in analysis of anisotropic growth and morphology of coherent second phase in other phase transformation systems.  相似文献   

17.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

18.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

19.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

20.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号