首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Tumors are formed in brain due to the uncontrolled development of cells. These tumors can be cured if it is timely detected and by proper medication. This article proposes a computer‐aided automatic detection and diagnosis of meningioma brain tumors in brain images using Adaptive Neuro Fuzzy Inference System (ANFIS) classifier. The proposed system consists of feature extraction, classification, and segmentation and diagnosis sections. In this article, Grey level Co‐occurrence Matric (GLCM) and Grid features are extracted from the brain image and these features are classified using ANFIS classifier into normal or abnormal. Then, morphological operations are used to segment the abnormal regions in brain image. Based on the location of these abnormal regions in brain tissues, the segmented tumor regions are diagnosed.  相似文献   

2.
Glioma is the severe type of brain tumor which leads to immediate death for the case high‐grade Glioma. The Glioma tumor patient in case of low grade can extend their life period if tumor is timely detected and providing proper surgery. In this article, a computer‐aided fully automated Glioma brain tumor detection and segmentation system is proposed using Adaptive Neuro Fuzzy Inference System (ANFIS) classifier based Graph cut approach. Initially, orientation analysis is performed on the brain image to obtain the edge enhanced abnormal regions in the brain. Then, features are extracted from the orientation enhanced image and these features are trained and classified using ANFIS classifier to classify the test brain image into either normal or abnormal. Normalized Graph cur segmentation methodology is applied on the classified abnormal brain image to segment the tumor region. The proposed Glioma tumor segmentation method is validated using the metric parameters as sensitivity, specificity, accuracy and dice similarity coefficient.  相似文献   

3.
The abrupt changes in brain cells due to the environmental effects or genetic disorders leads to form the abnormal lesions in brain. These abnormal lesions are combined as mass and known as tumor. The detection of these tumor cells in brain image is a complex task due to the similarities between normal cells and tumor cells. In this paper, an automated brain tumor detection and segmentation methodology is proposed. The proposed method consists of feature extraction, classification and segmentation. In this paper, Grey Level Co‐Occurrence Matrix (GLCM), Discrete Wavelet Transform (DWT) and Law's texture features are used as features. These features are fed to Adaptive Neuro Fuzzy Inference System (ANFIS) classifier as input pattern, which classifies the brain image. Morphological operations are now applied on the classified abnormal brain image to segment the tumor regions. The proposed system achieves 95.07% of sensitivity, 99.84% of specificity and 99.80% of accuracy for tumor segmentation.  相似文献   

4.
The development of abnormal cells in human brain leads to the formation of tumors. This article proposes an efficient approach for brain tumor detection and segmentation using image fusion and co-active adaptive neuro fuzzy inference system (CANFIS) classification method. The brain MRI images are fused and the dual tree complex wavelet transform is applied on the fused image. Then, the statistical features, local ternary pattern features and gray level co-occurrence matrix features. These extracted features are classified using CANFIS classification approach for the classification of source brain MRI image into either normal or abnormal. Further, morphological operations are applied on the abnormal brain MRI image for segmenting the tumor regions. The proposed methodology is evaluated with respect to the performance metrics sensitivity, specificity, positive predictive value, negative predictive value, tumor segmentation accuracy with detection rate. The proposed image fusion based brain tumor detection and classification methodology stated in this article achieves 96.5% of average sensitivity, 97.7% of average specificity, 87.6% of positive predictive value, 96.6% of negative predictive value, and 98.8% of average accuracy.  相似文献   

5.
The uncontrolled growth of cells in brain regions leads to the tumor regions and these abnormal tumor regions are scanned by magnetic resonance imaging (MRI) technique as an image. This paper proposes random forest classifier based Glioma brain tumor detection and segmentation methodology using feature optimization technique. The texture features are derived from brain MRI image and these derived feature set are now optimized by ant colony optimization algorithm. These optimized set of features are trained and classified using random forest classification method. This classifier classifies the brain MRI image into Glioma or non-Glioma image based on the optimized set of features. Furthermore, energy-based segmentation method is applied on the classified Glioma image for segmenting the tumor regions. The proposed methodology for Glioma brain tumor stated in this paper achieves 97.7% of sensitivity, 96.5% of specificity, and 98.01% of accuracy.  相似文献   

6.
Abnormal growth of cells in brain leads to the formation of tumors in brain. The earlier detection of the tumors in brain will save the life of the patients. Hence, this article proposes a computer‐aided fully automatic methodology for brain tumor detection using Co‐Active Adaptive Neuro Fuzzy Inference System (CANFIS) classifier. The internal region of the brain image is enhanced using image normalization technique and further contourlet transform is applied on the enhanced brain image for the decomposition with different scales. The grey level and heuristic features are extracted from the decomposed coefficients and these features are trained and classified using CANFIS classifier. The performance of the proposed brain tumor detection is analyzed in terms of classification accuracy, sensitivity, specificity, and segmentation accuracy.  相似文献   

7.
The abnormal development of cells in brain leads to the formation of tumors in brain. In this article, image fusion based brain tumor detection and segmentation methodology is proposed using convolutional neural networks (CNN). This proposed methodology consists of image fusion, feature extraction, classification, and segmentation. Discrete wavelet transform (DWT) is used for image fusion and enhanced brain image is obtained by fusing the coefficients of the DWT transform. Further, Grey Level Co‐occurrence Matrix features are extracted and fed to the CNN classifier for glioma image classifications. Then, morphological operations with closing and opening functions are used to segment the tumor region in classified glioma brain image.  相似文献   

8.
Brain tumor classification and retrieval system plays an important role in medical field. In this paper, an efficient Glioma Brain Tumor detection and its retrieval system is proposed. The proposed methodology consists of two modules as classification and retrieval. The classification modules are designed using preprocessing, feature extraction and tumor detection techniques using Co‐Active Adaptive Neuro Fuzzy Inference System (CANFIS) classifier. The image enhancement can be achieved using Heuristic histogram equalization technique as preprocessing and further texture features as Local Ternary Pattern (LTP) features and Grey Level Co‐occurrence Matrix (GLCM) features are extracted from the enhanced image. These features are used to classify the brain image into normal and abnormal using CANFIS classifier. The tumor region in abnormal brain image is segmented using normalized graph cut segmentation algorithm. The retrieval module is used to retrieve the similar segmented tumor regions from the dataset for diagnosing the tumor region using Euclidean algorithm. The proposed Glioma Brain tumor classification methodology achieves 97.28% sensitivity, 98.16% specificity and 99.14% accuracy. The proposed retrieval system achieves 97.29% precision and 98.16% recall rate with respect to ground truth images.  相似文献   

9.
Magnetic Resonance Imaging (MRI) is an advanced medical imaging technique that has proven to be an effective tool in the study of the human brain. In this article, the brain tumor is detected using the following stages: enhancement stage, anisotropic filtering, feature extraction, and classification. Histogram equalization is used in enhancement stage, gray level co‐occurrence matrix and wavelets are used as features and these extracted features are trained and classified using Support Vector Machine (SVM) classifier. The tumor region is detected using morphological operations. The performance of the proposed algorithm is analyzed in terms of sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV). The proposed system achieved 0.95% of sensitivity rate, 0.96% of specificity rate, 0.94% of accuracy rate, 0.78% of PPV, and 0.87% of NPV, respectively. © 2015 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 25, 297–301, 2015  相似文献   

10.
The task of segmentation of brain regions affected by ischemic stroke is help to tackle important challenges of modern stroke imaging analysis. Unfortunately, at the moment, the models for solving this problem using machine learning methods are far from ideal. In this paper, we consider a modified 3D UNet architecture to improve the quality of stroke segmentation based on 3D computed tomography images. We use the ISLES 2018 (Ischemic Stroke Lesion Segmentation Challenge 2018) open dataset to train and test the proposed model. Interpretation of the obtained results, as well as the ideas for further experiments are included in the paper. Our evaluation is performed using the Dice or f1 score coefficient and the Jaccard index. Our architecture may simply be extended to ischemia segmentation and computed tomography image identification by selecting relevant hyperparameters. The Dice/f1 score similarity coefficient of our model shown 58% and results close to ground truth which is higher than the standard 3D UNet model, demonstrating that our model can accurately segment ischemic stroke. The modified 3D UNet model proposed by us uses an efficient averaging method inside a neural network. Since this set of ISLES is limited in number, using the data augmentation method and neural network regularization methods to prevent overfitting gave the best result. In addition, one of the advantages is the use of the Intersection over Union loss function, which is based on the assessment of the coincidence of the shapes of the recognized zones.  相似文献   

11.
Among the various brain diseases, stroke is the major cause of death worldwide, next to heart attack. This paper proposes an algorithm in predicting the ischaemic stroke lesion using midline sketching and histogram bin-based technique. The visible ischaemic stroke lesion region and the normal region of the same computed tomography image are segmented with the help of histogram bins and the features are extracted. The first- and second-order statistical features for both regions are analysed. The differences in the features are utilised to categorise the lesion and non-lesion region. The statistical t-test analysis-based observations with a confidence interval of 95% for each feature are tabulated. These observations indicate that among the nine features, as per the statistical analysis, six features provide the clear differentiation between normal and abnormal regions.  相似文献   

12.
This article develops a methodology for meningioma brain tumor detection process using fuzzy logic based enhancement and co‐active adaptive neuro fuzzy inference system and U‐Net convolutional neural network classification methods. The proposed meningioma tumor detection process consists of the following stages as, enhancement, feature extraction, and classifications. The enhancement of the source brain image is done using fuzzy logic and then dual tree‐complex wavelet transform is applied to this enhanced image at different levels of scale. The features are computed from the decomposed sub band images and these features are further classified using CANFIS classification method which identifies the meningioma brain image from nonmeningioma brain image. The performance of the proposed meningioma brain tumor detection and segmentation system is analyzed in terms of sensitivity, specificity, segmentation accuracy, and Dice coefficient index with detection rate.  相似文献   

13.
The aim of this article is to design an expert system for medical image diagnosis. We propose a method based on association rule mining combined with classification technique to enhance the diagnosis of medical images. This system classifies the images into two categories namely benign and malignant. In the proposed work, association rules are extracted for the selected features using an algorithm called AprioriTidImage, which is an improved version of Apriori algorithm. Then, a new associative classifier CLASS_Hiconst ( CL assifier based on ASS ociation rules with Hi gh Con fidence and S uppor t ) is modeled and used to diagnose the medical images. The performance of our approach is compared with two different classifiers Fuzzy‐SVM and multilayer back propagation neural network (MLPNN) in terms of classifier efficiency with sensitivity, specificity, accuracy, positive predictive value, and negative predictive value. The experimental result shows 96% accuracy, 97% sensitivity, and 96% specificity and proves that association rule based classifier is a powerful tool in assisting the diagnosing process. © 2013 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 23, 194–203, 2013  相似文献   

14.
The electroencephalogram (EEG) is the frequently used signal to detect epileptic seizures in the brain. For a successful epilepsy surgery, it is very essential to localize epileptogenic area in the brain. The signals from the epileptogenic area are focal signals and signals from other area of the brain region nonfocal signals. Hence, the classification of focal and nonfocal signals is important for locating the epileptogenic area for epilepsy surgery. In this article, we present a computer aided automatic detection and classification method for focal and nonfocal EEG signal. The EEG signal is decomposed by Dual Tree Complex Wavelet Transform (DT‐CWT) and the features are computed from the decomposed coefficients. These features are trained and classified using Adaptive Neuro Fuzzy Inference System (ANFIS) classifier. The proposed system achieves 98% sensitivity, 100% specificity, and 99% accuracy for EEG signal classification. The experimental results are presented to show the effectiveness of the proposed classification method to classify the focal and nonfocal EEG signals. © 2016 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 26, 277–283, 2016  相似文献   

15.
The segmentation of brain tumors in magnetic resonance imaging plays a significant role in the field of image processing. This process has high computational complexity when handled manually by clinical experts. The accuracy in classifying and segmenting the brain tumor depends on the radiologists' experience. The computer-aided diagnosis-based brain tumor segmentation approach is proposed to overcome the existing limitations. The proposed convolutional neural network and support vector machine approach consists of the following stages. In the preprocessing stage, unwanted noise and intensity inhomogeneity are suppressed using an anisotropic diffusion filter. Then, the features are extracted using the deep convolutional neural network, and based on the features; the input brain image is classified into normal or abnormal using a support vector machine classifier. The proposed method gives a more successful accuracy rate of 2.11%. Compared with the other methods, the sensitivity and specificity values are also improved to 4.79% and 1.19%.  相似文献   

16.
Abnormal growth of cells in brain leads to the formation of tumors, which are categorized into benign and malignant. In this article, Co‐Active Adaptive Neuro Fuzzy Inference System (CANFIS) classification based brain tumor detection and its grading system is proposed. It has two phases as brain tumor segmentation and brain tissue segmentation. In brain tumor segmentation, CANFIS classifier is used to classify the test brain image into benign or malignant. Then, morphological operations are applied over the malignant image in order to segment the tumor regions in brain image. The K‐means classifier is used to classify the brain tissues into Grey Matter (GM), White Matter (WM) and Cerebro Spinal Fluid (CSF) regions as three different classes. Next, the segmented tumor is graded as mild, moderate or severe based on the presence of segmented tumor region in brain tissues.  相似文献   

17.
The detection and segmentation of tumor region in brain image is a critical task due to the similarity between abnormal and normal region. In this article, a computer‐aided automatic detection and segmentation of brain tumor is proposed. The proposed system consists of enhancement, transformation, feature extraction, and classification. The shift‐invariant shearlet transform (SIST) is used to enhance the brain image. Further, nonsubsampled contourlet transform (NSCT) is used as multiresolution transform which transforms the spatial domain enhanced image into multiresolution image. The texture features from grey level co‐occurrence matrix (GLCM), Gabor, and discrete wavelet transform (DWT) are extracted with the approximate subband of the NSCT transformed image. These extracted features are trained and classified into either normal or glioblastoma brain image using feed forward back propagation neural networks. Further, K‐means clustering algorithm is used to segment the tumor region in classified glioblastoma brain image. The proposed method achieves 89.7% of sensitivity, 99.9% of specificity, and 99.8% of accuracy.  相似文献   

18.
This article proposes a novel and efficient methodology for the detection of Glioblastoma tumor in brain MRI images. The proposed method consists of the following stages as preprocessing, Non‐subsampled Contourlet transform (NSCT), feature extraction and Adaptive neuro fuzzy inference system classification. Euclidean direction algorithm is used to remove the impulse noise from the brain image during image acquisition process. NSCT decomposes the denoised brain image into approximation bands and high frequency bands. The features mean, standard deviation and energy are computed for the extracted coefficients and given to the input of the classifier. The classifier classifies the brain MRI image into normal or Glioblastoma tumor image based on the feature set. The proposed system achieves 99.8% sensitivity, 99.7% specificity, and 99.8% accuracy with respect to the ground truth images available in the dataset.  相似文献   

19.
A computer software system is designed for the segmentation and classification of benign and malignant tumor slices in brain computed tomography images. In this paper, we present a texture analysis methods to find and select the texture features of the tumor region of each slice to be segmented by support vector machine (SVM). The images considered for this study belongs to 208 benign and malignant tumor slices. The features are extracted and selected using Student's t‐test. The reduced optimal features are used to model and train the probabilistic neural network (PNN) classifier and the classification accuracy is evaluated using k fold cross validation method. The segmentation results are also compared with the experienced radiologist ground truth. Quantitative analysis between ground truth and segmented tumor is presented in terms of quantitative measure of segmentation accuracy and the overlap similarity measure of Jaccard index. The proposed system provides some newly found texture features have important contribution in segmenting and classifying benign and malignant tumor slices efficiently and accurately. The experimental results show that the proposed hybrid texture feature analysis method using Probabilistic Neural Network (PNN) based classifier is able to achieve high segmentation and classification accuracy effectiveness as measured by Jaccard index, sensitivity, and specificity.  相似文献   

20.
Intracranial arterial calcification (IAC) is associated with ischemic stroke in the general population but this relationship has not been examined in hemodialysis patients. We examined the factors associated with IAC and its relationship with acute ischemic stroke in this population. We retrospectively studied 490 head computed tomographic scans from 2225 hemodialysis patients presenting with neurological symptoms at our center (October 2005-May 2009). Intracranial arterial calcification was graded using a validated scoring system. Multivariate regression was used to examine the factors associated with the presence of IAC, its severity, and its ability to predict acute ischemic stroke. Weibull's survival models analyzed the relationship between IAC severity and survival. Ninety-five percent of patients with ischemic stroke had IAC vs. 83% in the nonstroke group (P=0.02). Intracranial arterial calcification severity increased with age (P<0.001), hemodialysis vintage (P<0.001), serum phosphate (P<0.05), and major comorbidities. In patients with multiple computed tomographic scans during the study period, increased IAC severity at baseline was predictive of acute ischemic stroke (P=0.05) on logistic regression analysis. High-grade and not low-grade IAC was associated with worse survival (P=0.008). Intracranial arterial calcification is highly prevalent in hemodialysis patients, especially in those with acute ischemic stroke. Its severity is prognostically significant and associated with risk factors for vascular calcification and may confer a greater risk of acute ischemic stroke. The mechanisms underlying the high incidence of ischemic stroke in this patient group require further comprehensive study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号