首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 322 毫秒
1.
Pilot symbol assisted modulation (PSAM) is a standard approach for transceiver design for time-varying channels, with channel estimates obtained from pilot symbols being employed for coherent demodulation of the data symbols. In this paper, we show that PSAM schemes can be improved by adapting the coded modulation strategy at the sender to the quality of the channel measurement at the receiver, without requiring any channel feedback from the receiver. We consider performance in terms of achievable rate for binary signaling schemes. The transmitter employs interleaved codes, with data symbols coded according to their distance from the nearest pilot symbols. Symbols far away from pilot symbols encounter poorer channel measurements at the receiver and are therefore coded with lower rate codes, while symbols close to pilot symbols benefit from recent channel measurements and are coded with higher rate codes. The performance benefits from this approach are quantified in the context of binary signaling over time-varying Rayleigh fading channels described by a Gauss-Markov model. The spacing of the pilot symbols is optimized to maximize the mutual information between input and output in this setting. Causal and noncausal channel estimators of varying complexity and delay are considered. It is shown that, by appropriate optimization for the spacing between consecutive pilot symbols, the adaptive coding techniques proposed can improve achievable rate, without any feedback from the receiver to the sender. Moreover, channel estimation based on the two closest pilot symbols is generally close to optimal.  相似文献   

2.
We determine the bit-error rate (BER) of multilevel quadrature amplitude modulation (M-QAM) in flat Rayleigh fading with imperfect channel estimates, Despite its high spectral efficiency, M-QAM is not commonly used over fading channels because of the channel amplitude and phase variation. Since the decision regions of the demodulator depend on the channel fading, estimation error of the channel variation can severely degrade the demodulator performance. Among the various fading estimation techniques, pilot symbol assisted modulation (PSAM) proves to be an effective choice. We first characterize the distribution of the amplitude and phase estimates using PSAM. We then use this distribution to obtain the BER of M-QAM as a function of the PSAM and channel parameters. By using a change of variables, our exact BER expression has a particularly simple form that involves just a few finite-range integrals. This approach can be used to compute the BER for any value of M. We compute the BER for 16-QAM and 64-QAM numerically and verify our analytical results by computer simulation. We show that for these modulations, amplitude estimation error leads to a 1-dB degradation in average signal-to-noise ratio and combined amplitude-phase estimation error leads to 2.5-dB degradation for the parameters we consider  相似文献   

3.
Adaptive Modulation over Nakagami Fading Channels   总被引:29,自引:4,他引:25  
We first study the capacity of Nakagami multipath fading (NMF) channels with an average power constraint for three power and rate adaptation policies. We obtain closed-form solutions for NMF channel capacity for each power and rate adaptation strategy. Results show that rate adaptation is the key to increasing link spectral efficiency. We then analyze the performance of practical constant-power variable-rate M-QAM schemes over NMF channels. We obtain closed-form expressions for the outage probability, spectral efficiency and average bit-error-rate (BER) assuming perfect channel estimation and negligible time delay between channel estimation and signal set adaptation. We also analyze the impact of time delay on the BER of adaptive M-QAM.  相似文献   

4.
Enabling linear minimum-mean square error (LMMSE)-based estimation of random time-selective channels, pilot-symbol-assisted modulation (PSAM) has well-documented merits as a fading counter-measure boosting bit-error rate performance. We design average-rate optimal PSAM transmissions by maximizing a tight lower bound of the average channel capacity. Relying on a simple closed-form expression of this bound in terms of the LMMSE channel estimator variance, we obtain PSAM transmissions with optimal spacing of pilot symbols and optimal allocation of the transmit-power budget between pilot and information symbols. Equi-powered transmitted symbols, channels with special Doppler spectra, and analytical and simulation based comparisons of possible alternatives shed more light on information-theoretic aspects of PSAM-based transmissions.  相似文献   

5.
In this paper, we study the optimal training and data transmission strategies for block fading multiple-input multiple-output (MIMO) systems with feedback. We consider both the channel gain feedback (CGF) system and the channel covariance feedback (CCF) system. Using an accurate capacity lower bound as a figure of merit that takes channel estimation errors into account, we investigate the optimization problems on the temporal power allocation to training and data transmission as well as the training length. For CGF systems without feedback delay, we prove that the optimal solutions coincide with those for nonfeedback systems. Moreover, we show that these solutions stay nearly optimal even in the presence of feedback delay. This finding is important for practical MIMO training design. For CCF systems, the optimal training length can be less than the number of transmit antennas, which is verified through numerical analysis. Taking this fact into account, we propose a simple yet near optimal transmission strategy for CCF systems, and derive the optimal temporal power allocation over pilot and data transmission.  相似文献   

6.
High data rates give rise to frequency-selective propagation, whereas carrier frequency-offsets and mobility-induced Doppler shifts introduce time-selectivity in wireless links. To mitigate the resulting time- and frequency-selective (or doubly selective) channels, optimal training sequences have been designed only for special cases: pilot symbol assisted modulation (PSAM) for time-selective channels and pilot tone-assisted orthogonal frequency division multiplexing (OFDM) for frequency-selective channels. Relying on a basis expansion channel model, we design low-complexity optimal PSAM for block transmissions over doubly selective channels. The optimality in designing our PSAM parameters consists of maximizing a tight lower bound on the average channel capacity that is shown to be equivalent to the minimization of the minimum mean-square channel estimation error. Numerical results corroborate our theoretical designs.  相似文献   

7.
We consider the design of power-adaptive systems for minimizing the average bit-error rate over flat fading channels. Channel state information, obtained through estimation at the receiver, is sent to the transmitter over a feedback channel, where it is used to optimally adapt the transmit power. We consider finite-state optimal policies to reflect the limitations of the feedback channel. We develop an iterative algorithm that determines the optimal finite-state power control policy given the probability density function (PDF) of the fading. Next, we present a discretized formulation of the problem and obtain a suboptimal solution via standard dynamic programming techniques. The discretization of the problem enables us to obtain a suboptimal policy for arbitrary fading channels for which the analytic expression of the fading probability density function is not available. Simulation results are used to draw conclusions regarding the effects of limited feedback channel capacity, delay and number of states on the bit-error rate performance of the proposed policies under slow and moderate fading conditions  相似文献   

8.
We introduce an iterative joint channel and data estimation receiver that exploits both the power of pilot-symbol assisted modulation (PSAM) and turbo coding for fading channels. The key innovation is a low-complexity soft channel estimator which divides a processing block into overlapped cells and performs maximum a posteriori (MAP) sequence estimation and MMSE filtering based on the received signal and extrinsic information delivered by the soft channel decoder. Simulation results show that for turbo-coded PSAM systems under time-variant fading the proposed receiver offers significant performance gains over a non-iterative receiver and two other cancellation schemes  相似文献   

9.
Optimum detectors for pilot symbol assisted modulation (PSAM) signals in Rayleigh and Rician fading channels are derived. Conventional PSAM as used on Rayleigh fading channels is also employed on Rician fading channels. It is shown that the conventional PSAM receiver is optimal for binary phase shift keying in Rayleigh fading but suboptimal for Rician fading and suboptimal for 16-ary quadrature amplitude modulation in Rayleigh fading. The optimum PSAM signal detector uses knowledge of the specular component and also jointly processes the pilot symbols and the data symbol. The performance of the optimum detector is analyzed and compared with that of the conventional detector. It is concluded that substantial gains can be achieved by exploiting knowledge of the specular component while joint processing of the data symbol with the pilot symbols may offer small benefits.  相似文献   

10.
The effect of imperfect channel estimation (CE) on the performance of pilot-symbol-assisted modulation (PSAM) and MRC Rake reception over time- or frequency-selective fading channels with either a uniform power delay profile (UPDP) or a nonuniform power delay profile (NPDP) is investigated. For time-selective channels, a Wiener filter or linear minimum mean square error (LMMSE) filter for CE is considered, and a closed-form asymptotic expression for the mean square error (MSE) when the number of pilots used for CE approaches infinity is derived. In high signal-to-noise ratio (SNR), the MSE becomes independent of the channel Doppler spectrum. A characteristic function method is used to derive new closed-form expressions for the bit error rate (BER) of Rake receivers in UPDP and NPDP channels. The results are extended to two-dimensional (2-D) Rake receivers. The pilot-symbol spacing and pilot-to-data power ratio are optimized by minimizing the BER. For UPDP channels, elegant results are obtained in the asymptotic case. Furthermore, robust spacing design criteria are derived for the maximum Doppler frequency.  相似文献   

11.
The location, number, and power of pilot symbols embedded in multicarrier block transmissions over rapidly fading channels, are important design parameters affecting not only channel estimation performance, but also channel capacity. Considering orthogonal frequency-division multiplexing (OFDM) systems with decoupled information-bearing symbols from pilot symbols transmitted over wireless frequency-selective Rayleigh-fading channels, we show that equispaced and equipowered pilot symbols are optimal in terms of minimizing the mean-square channel estimation error. We also design the number of pilots, and the power distributed between information bearing and pilot symbols, using as criterion a lower bound on the average capacity. Numerical results corroborate our theoretical findings.  相似文献   

12.
The Adaptive PSAM Design in Cross-Layer   总被引:1,自引:1,他引:0  
The purpose is to design the pilot symbols efficiently and adaptively in communication systems to guarantee the minimum channel estimation error and the required quality of service (QoS). The various adaptive schemes about pilot symbols assisted modulation (PSAM) are obtained in terms of the pilot-insertion frequency and the power arrangement. The pilot-insertion frequency is redefined according to the sampling theory and the characteristics of fading channels, such as the level crossing rate (LCR) and the average fading duration (AFD). The power arrangement is optimized by maximizing the average spectral efficiency (ASE) in cross-layer design system. Besides, the ASE function in such a system is modified taking the imperfect channel state information caused by channel estimation into considered. The closed-form expression of modified ASE is present in this paper. From both the theoretical analysis and simulation points of view, a suitable scheme about PSAM design is obtained for cross-layer design.
P. Takis MathiopoulosEmail:
  相似文献   

13.
Wavelet packet division multiplexing (WPDM) is a high-capacity, flexible, and robust multiple-signal transmission technique. In this paper, a novel WPDM system based on optimum pilot symbol assisted modulation (OPSAM) and a maximum likelihood (ML) algorithm is studied for Rayleigh fading channels. The ML detecting algorithm and the new discrete wavelet packet transform structure, which is based on pilot symbol assisted modulation (PSAM) using a least mean squares algorithm, are two novel aspects of the presented system. An expression for the bit error rate of the WPDM scheme on quadrature phase-shift keying (QPSK) is derived in the presence of flat fading and Gaussian noise. It is demonstrated by simulation results that the OPSAM WPDM scheme can provide greater immunity to flat fading channels and Gaussian noise than the OPSAM orthogonal frequency division multiplexing scheme, the differential QPSK WPDM scheme, and the normal PSAM WPDM scheme.  相似文献   

14.
Transmitter diversity wireless communication systems over Rayleigh fading channels using pilot symbol assisted modulation (PSAM) are studied. Unlike conventional transmitter diversity systems with PSAM that estimate the superimposed fading process, we are able to estimate each individual fading process corresponding to the multiple transmitters by using appropriately designed pilot symbol sequences. With such sequences, special coded modulation schemes can then be designed to access the diversity provided by the multiple transmitters without having to use an interleaver or expand the signal bandwidth. The code matrix notion is introduced for the coded modulation scheme, and its design criteria are also established. In addition to the reduction in receiver complexity, simulation results are compared to, and shown to be superior to, that of an intentional frequency offset system over a wide range of system parameters  相似文献   

15.
Joint channel estimation and decoding in a time-varying Rayleigh fading channel is considered. Knowing that the optimal solution or even the truncated near-optimal solution using iterative processing has an exponential complexity which hinders the practicability, a reduced complexity approach is proposed. This approach keeps the existing channel estimation and decoding schemes almost intact, while applying iterative processing to effectively exchange information between them. Thus, the complexity is rendered linear, and estimator adaptability can be easily established. We apply this approach to pilot symbol-assisted modulation (PSAM) and differentially modulated systems. It turns out that the performance is improved and the robustness to fading parameters is enhanced. Through simulations, we also show that the proposed method performs almost as well as the near-optimal design  相似文献   

16.
In this paper, a simple algorithm for adaptation of the complex baseband weights of a transmit antenna array using feedback from the receiver is proposed and analyzed. The system utilizes stochastic gradient adaptation to maximize the power delivered to the receiver for a constrained transmission power, which provides both fading diversity and beam steering gain. Dual perturbed transmission weight vectors are time multiplexed onto the pilot signal, and the receiver generates feedback selecting the perturbed weight vector which delivers greater power. This feedback is used to provide weight adaptation at the transmitter, and this adaptation is shown to be an update by a coarse estimate of the gradient of the delivered power. The performance of the algorithm is analyzed in terms of convergence and tracking of an AR1 fading channel, with simulations confirming the analysis. Bit error rate (BER) simulations in a dynamic fading channel show that the algorithm outperforms previously proposed vector selection feedback, and in slower fading, the algorithm substantially outperforms diversity space time coding.  相似文献   

17.
In this paper, we study the effect of imperfect channel estimation (ICE) on the performance of M-level quadrature amplitude modulation (M-QAM) with maximum ratio combining (MRC) and pilot-symbol assisted modulation (PSAM) in generalized Rician fading channels. By expressing the bit error rate (BER) of MRC diversity M-QAM in terms of the distribution of new decision variables, we derive novel, exact, and easy-to-evaluate BER expressions for diversity M-QAM with channel estimation errors. Our results include versatile system and fading channel parameters (e.g., arbitrary spatial and temporal correlation patterns among the diversity branches), and are valid for arbitrary linear channel estimators and square and rectangular M -QAM with different constellation sizes. In addition, we evaluate the performance of minimum mean-squared error (MMSE)- and sinc-interpolator-based channel estimators with PSAM, and provide some new insights into the performance of M-QAM with PSAM in generalized fading channels  相似文献   

18.
Channel estimation in multipath environments is typically performed using the pilot-symbol-assisted modulation (PSAM) scheme. However, the traditional PSAM scheme requires the use of dedicated pilot subcarriers and therefore leads to a reduction in the bandwidth utilization. Accordingly, this paper investigates a channel-estimation approach for orthogonal frequency-division multiplexing (OFDM) systems using a superimposed training (ST) scheme, in which the pilot symbols are superimposed onto the data streams prior to transmission. By using equally spaced pilot symbols of equal power and assuming that the number of pilots is larger than the channel order, it is shown that the channel-estimation performance is independent of the number of pilots used. The optimal ratio of the pilot symbol power to the total transmission power is analyzed to maximize the lower bound of the channel capacity. Overall, the current results show that the ST-based channel estimation schemes have a slightly poorer performance than the PSAM scheme but yield higher system capacity.  相似文献   

19.
On the capacity of OFDM-based spatial multiplexing systems   总被引:4,自引:0,他引:4  
This paper deals with the capacity behavior of wireless orthogonal frequency-division multiplexing (OFDM)-based spatial multiplexing systems in broad-band fading environments for the case where the channel is unknown at the transmitter and perfectly known at the receiver. Introducing a physically motivated multiple-input multiple-output (MIMO) broad-band fading channel model, we study the influence of physical parameters such as the amount of delay spread, cluster angle spread, and total angle spread, and system parameters such as the number of antennas and antenna spacing on ergodic capacity and outage capacity. We find that, in the MIMO case, unlike the single-input single-output (SISO) case, delay spread channels may provide advantages over flat fading channels not only in terms of outage capacity but also in terms of ergodic capacity. Therefore, MIMO delay spread channels will in general provide both higher diversity gain and higher multiplexing gain than MIMO flat fading channels  相似文献   

20.
We study a multiple-layer variable-rate system employing quantized feedback to maximize the expected rate over a single-input single-output slowly fading Gaussian channel. The transmitter uses partial channel-state information, which is obtained via an optimized resolution-constrained feedback link, to adapt the power and to assign code layer rates, subject to different power constraints. To systematically design the system parameters, we develop a simple iterative algorithm that successfully exploits results in the study of parallel broadcast channels. We present the necessary and sufficient conditions for single-layer coding to be optimal, irrespective of the number of code layers that the system can afford. Unlike in the ergodic case, even coarsely quantized feedback is shown to improve the expected rate considerably. Our results also indicate that with as little as one bit of feedback information, the role of multilayer coding reduces significantly  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号