首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated effects of applied force on the apparent mass of the hand, the dynamic stiffness of glove materials and the transmission of vibration through gloves to the hand. For 10 subjects, 3 glove materials and 3 contact forces, apparent masses and glove transmissibilities were measured at the palm and at a finger at frequencies in the range 5–300 Hz. The dynamic stiffnesses of the materials were also measured. With increasing force, the dynamic stiffnesses of the materials increased, the apparent mass at the palm increased at frequencies greater than the resonance and the apparent mass at the finger increased at low frequencies. The effects of force on transmissibilities therefore differed between materials and depended on vibration frequency, but changes in apparent mass and dynamic stiffness had predictable effects on material transmissibility. Depending on the glove material, the transmission of vibration through a glove can be increased or decreased when increasing the applied force.

Practitioner summary: Increasing the contact force (i.e. push force or grip force) can increase or decrease the transmission of vibration through a glove. The vibration transmissibilities of gloves should be assessed with a range of contact forces to understand their likely influence on the exposure of the hand and fingers to vibration.  相似文献   


2.
The effects of vibration-reducing gloves on finger vibration   总被引:1,自引:0,他引:1  
Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed.  相似文献   

3.
《Ergonomics》2012,55(12):1823-1840
Vibration-reducing (VR) gloves are commonly used as a means to help control exposures to hand-transmitted vibrations generated by powered hand tools. The objective of this study was to characterise the vibration transmissibility spectra and frequency-weighted vibration transmissibility of VR gloves at the palm of the hand in three orthogonal directions. Seven adult males participated in the evaluation of seven glove models using a three-dimensional hand–arm vibration test system. Three levels of hand coupling force were applied in the experiment. This study found that, in general, VR gloves are most effective at reducing vibrations transmitted to the palm along the forearm direction. Gloves that are found to be superior at reducing vibrations in the forearm direction may not be more effective in the other directions when compared with other VR gloves. This casts doubts on the validity of the standardised glove screening test.

Practitioner Summary: This study used human subjects to measure three-dimensional vibration transmissibility of vibration-reducing gloves at the palm and identified their vibration attenuation characteristics. This study found the gloves to be most effective at reducing vibrations along the forearm direction. These gloves did not effectively attenuate vibration along the handle axial direction.  相似文献   

4.
This study proposes a methodology for evaluating the integrated performance of vibration reducing (VR) gloves considering four measures. These include manual dexterity, distributed palm and fingers vibration transmission and grip strength preservation, which generally pose conflicting design requirements. The weights for the conflicting performance measures are identified for the given work conditions, classified according to the frequency ranges of predominant tool handle vibration (low and high), as defined in ISO-10819 together with the assembly/disassembly tasks. An index of weighted measures is formulated for identifying the most desirable VR glove for the given work condition. The results showed the greatest weighting for the fingers vibration response for high-frequency vibration spectra. Higher weightings for palm vibration and muscles' activity, were obtained for low-frequency vibration spectra, while the weighting for manual dexterity increased when coupled with manual tasks. An integrated performance index is identified and applied to rank nine different VR gloves and a conventional glove with known individual performance measures for identifying the most desirable glove. The vibration reducing gloves included: five gloves with gel vibration isolation materials, denoted as gel1, …, gel5; two gloves with air bladder vibration isolation material, denoted as air1 and air2; one hybrid glove comprising air pocket vibration isolation material in the palm region and gel in the fingers regions, denoted as hybrid; and a rubber glove. The gel2, air2 and hybrid gloves, made of air bladder or viscoelastic gels, showed superior integrated performance for high- and low-frequency vibration spectra among the ten alternatives. The fabric and rubber gloves revealed best integrated performance for the multiple tasks in conjunction with the low-frequency vibration spectrum.  相似文献   

5.
The push force and its perception when inserting a flexible hose laterally into a connector were investigated. Effects of hose diameter, glove, target position and obstacle condition were studied. Maximum voluntary insertion forces (MVFs) under similar working conditions were also measured. The larger the diameter, the higher the force required. The peak axial forces for the hoses of 6, 12 and 16 mm in diameter were on average respectively 94, 122 and 184 N, representing 45%, 61% and 93% of MVF. Glove condition, target position and obstacle did not significantly affect the axial insertion force and moment, but they did affect effort perception. Lower effort was perceived with gloves and high and near position. High intra- and inter-individual variability in insertion force for a given hose may suggest that feedback of successful insertion was insufficient. The recognition of a successful insertion must be ensured to avoid unnecessary extra force exertion.

Practitioner summary: The effects of glove, hose diameter, target location and obstacle on push force and its perception were studied when inserting a flexible hose. Solutions for improving the recognition of a successful insertion and the hose/connector system design must be found to reduce force exertion to safe levels.  相似文献   


6.
The transmission of vibration from hand-held tools via work gloves and into the operators' hands can be affected by several factors such as glove material properties, tool vibration conditions, grip force, and temperature. The primary aim of this study is to develop a new methodology to measure and evaluate vibration transmissibility for a human finger in contact with different materials, whilst measuring and controlling the grip force. The study presented here used a new bespoke lab-based apparatus for assessing vibration transmissibility that includes a generic handle instrumented for vibration and grip force measurements. The handle is freely suspended and can be excited at a range of real-world vibration conditions whilst being gripped by a human subject. The study conducted a frequency response function (FRF) of the handle using an instrumented hammer to ensure that the handle system was resonance free at the important frequency range for glove research, as outlined in ISO 10819: 1996: 2013, and also investigated how glove material properties and design affect the tool vibration transmission into the index finger (Almagirby et al. 2015). The FRF results obtained at each of six positions shows that the dynamic system of the handle has three resonance frequencies in the low frequency range (2, 11 and 17 Hz) and indicated that no resonances were displayed up to a frequency of about 550 Hz. No significant vibration attenuation was shown at frequencies lower than 150 Hz. The two materials cut from the gloves that were labelled as anti-vibration gloves (AV) indicated resonance at frequencies of 150 and 160 Hz. However, the non-glove material that did not meet the requirements for AV gloves showed resonance at 250 Hz. The attenuation for the three materials was found at frequencies of 315 Hz and 400 Hz. The level and position of the true resonance frequencies were found to vary between samples and individual subjects.  相似文献   

7.
Kyung-Sun Lee 《Ergonomics》2016,59(7):890-900
The objective of this study was to identify three-dimensional finger joint angles for various hand postures and object properties. Finger joint angles were measured using a VICON system for 10 participants while they pinched objects with two, three, four and five fingers and grasped them with five fingers. The objects were cylinders and square pillars with diameters of 2, 4, 6 and 8 cm and weights of 400, 800, 1400 and 1800 g. Hand posture and object size more significantly affected the joint flexion angles than did object shape and weight. Object shape affected only the metacarpophalangeal (MCP) joint angle of the index finger and the flexion angle of the MCP joint of the little finger. Larger flexion angles resulted when the hand posture was grasping with five fingers. The joint angle increased linearly as the object size decreased. This report provides fundamental information about the specific joint angles of the thumb and fingers.

Practitioner Summary: Three-dimensional finger joint angles are of special interest in ergonomics because of their importance in handheld devices and musculoskeletal hand disorders. In this study, the finger joint angles corresponding to various hand postures and objects with different properties were determined.  相似文献   


8.
This study conducted two series of experiments to investigate the relationships between hand coupling force and biodynamic responses of the hand–arm system. In the first experiment, the vibration transmissibility on the system was measured as a continuous function of grip force while the hand was subjected to discrete sinusoidal excitations. In the second experiment, the biodynamic responses of the system subjected to a broadband random vibration were measured under five levels of grip forces and a combination of grip and push forces. This study found that the transmissibility at each given frequency increased with the increase in the grip force before reaching a maximum level. The transmissibility then tended to plateau or decrease when the grip force was further increased. This threshold force increased with an increase in the vibration frequency. These relationships remained the same for both types of vibrations. The implications of the experimental results are discussed.

Practitioner Summary: Shocks and vibrations transmitted to the hand–arm system may cause injuries and disorders of the system. How to take hand coupling force into account in the risk assessment of vibration exposure remains an important issue for further studies. This study is designed and conducted to help resolve this issue.  相似文献   


9.
《Ergonomics》2012,55(5):488-496
The extent to which a glove modifies the risks from hand-transmitted vibration is quantified in ISO 10819:1996 by a measure of glove transmissibility determined with one vibration magnitude, one contact force with a handle and only three subjects. This study was designed to investigate systematically the vibration transmissibility of four ‘anti-vibration’ gloves over the frequency range 16–1600 Hz with 12 subjects, at six magnitudes of vibration (0.25–8.0 ms?2 r.m.s.) and with six push forces (5 N to 80 N). The four gloves showed different transmissibility characteristics that were not greatly affected by vibration magnitude but highly dependent on push force. In all conditions, the variability in transmissibility between subjects was as great as the variability between gloves. It is concluded that a standardised test of glove dynamic performance should include a wide range of hands and a range of forces representative of those occurring in work with vibratory tools.

Statement of Relevance: The transmission of vibration through anti-vibration gloves is highly dependent on the push force between the hand and a handle and also highly dependent on the hand that is inside the glove. The influence of neither factor is well reflected in ISO 10819:1996, the current standard for anti-vibration gloves.  相似文献   

10.
The last few years have seen the development of Discrete Event-Dynamic Net Systems1,2 as instruments for modeling complex systems. They are able to achieve the following objectives:

—formality of the modeling methodology

—ability to model static and dynamic aspects

—ability to pass between levels of differently rich structures by morphisms

—uniform representation of the communication process as

—an information process

—a decision process and

—a control process

—homogeneity of the representation and modeling methods

—ability to derive qualitative and quantitative statements.

The foundation is provided by a Discrete Event-Dynamic Net System which includes the axiomatic declaration of general Petri nets. In order to calculate the structural and dynamic aspects, so-called Petri net machines are developed. It is shown that this approach can even be used to treat the following aspects:

—use of time during the process

—increase of costs during the generation and transportation of information

—augmentation, evaluation and transformation of information objects.

Recursive formulas are derived and some examples calculated.  相似文献   


11.
《Ergonomics》2012,55(4):723-733
Latex gloves of five different thicknesses (0·21 mm, 0·51 mm, 0·65 mm, 0·76 mm, and 0·83 mm) were manufactured in-house and tested for dexterity and tactility; dexterity and tactility measures with the bare hand were used as control values. Fifteen adult males (mean age = 22·8 years, mean stature = 179 cm, mean body weight = 75·4 kg, mean palm width = 9·9 cm, mean palm depth = 10·9 cm, and mean middle finger length = 9 cm) and five adult females (mean age = 21·2 years, mean stature = 168 cm, mean body weight = 53·6 kg, mean palm width = 8 cm, mean palm depth = 8 cm, and mean middle finger length = 8·3 cm) voluntarily participated. The gloves also were tested for punctures resulting from impact forces encountered during routine hand movements. The results indicated that the latex glove with 0·83 mm thickness successfully resisted routine impact forces and at the same time provided dexterity and tactility comparable to the bare hand. Thinner gloves failed the impact test and punctured. This indicates that it is possible to greatly reduce the incidence of exposure to contaminated body fluids through accidental needlesticks without compromising the preferred hand's capabilities  相似文献   

12.
The importance of hand anthropometry as it relates to design of hand tools particularly for farm workers have been established; however, anthropometric data for this group of agricultural workers have continued to remain scarce. A survey of hand anthropometry relevant in design of agricultural hand tools was carried out on 200 male and 100 female adult farm workers in south-eastern Nigeria. Comparison of the male and female data obtained showed that male dimensions were higher than that recorded for the females. The hand anthropometric data of the male and female farm workers were compared with that of other populations but no clear distinction was observed. It was however clear that the following hand dimensions, 2nd Joint to root digit 3 and width at tip digit 3 recorded for Nigerian farm workers were highest and lowest, respectively, compared to other populations.

Practitioner Summary:

Hand anthropometric data relevant in design of hand tools have continued to remain scarce particularly for farm workers. Hand anthropometry survey of farm workers carried out in south-eastern Nigeria revealed higher dimensions for males than females; however, no clear distinction was observed in comparison with other populations.  相似文献   


13.
Laszlo HE  Griffin MJ 《Ergonomics》2011,54(5):488-496
The extent to which a glove modifies the risks from hand-transmitted vibration is quantified in ISO 10819:1996 by a measure of glove transmissibility determined with one vibration magnitude, one contact force with a handle and only three subjects. This study was designed to investigate systematically the vibration transmissibility of four 'anti-vibration' gloves over the frequency range 16-1600 Hz with 12 subjects, at six magnitudes of vibration (0.25-8.0 ms(-2) r.m.s.) and with six push forces (5 N to 80 N). The four gloves showed different transmissibility characteristics that were not greatly affected by vibration magnitude but highly dependent on push force. In all conditions, the variability in transmissibility between subjects was as great as the variability between gloves. It is concluded that a standardised test of glove dynamic performance should include a wide range of hands and a range of forces representative of those occurring in work with vibratory tools. STATEMENT OF RELEVANCE: The transmission of vibration through anti-vibration gloves is highly dependent on the push force between the hand and a handle and also highly dependent on the hand that is inside the glove. The influence of neither factor is well reflected in ISO 10819:1996, the current standard for anti-vibration gloves.  相似文献   

14.
Handgrip strength is essential in manual operations and activities of daily life, but the influence of forearm/hand skin temperature on estimation of handgrip strength is not well documented. Therefore, the present study intended to investigate the effect of local cooling of the forearm/hand on estimation of handgrip strength at various target force levels (TFLs, in percentage of MVC) for both genders. A cold pressor test was used to lower and maintain the hand skin temperature at 14°C for comparison with the uncooled condition. A total of 10 male and 10 female participants were recruited. The results indicated that females had greater absolute estimation deviations. In addition, both genders had greater absolute deviations in the middle range of TFLs. Cooling caused an underestimation of grip strength. Furthermore, a power function is recommended for establishing the relationship between actual and estimated handgrip force.

Statement of relevance: Manipulation with grip strength is essential in daily life and the workplace, so it is important to understand the influence of lowering the forearm/hand skin temperature on grip-strength estimation. Females and the middle range of TFL had greater deviations. Cooling the forearm/hand tended to cause underestimation, and a power function is recommended for establishing the relationship between actual and estimated handgrip force.

Practitioner Summary: It is important to understand the effect of lowering the forearm/hand skin temperature on grip-strength estimation. A cold pressor was used to cool the hand. The cooling caused underestimation, and a power function is recommended for establishing the relationship between actual and estimated handgrip force.  相似文献   


15.
Recently, some smartphones have introduced index finger interaction functions on the rear surface. The current study investigated the effects of task type, phone width, and hand length on grasp, index finger reach zone, discomfort, and muscle activation during such interaction. We considered five interaction tasks (neutral, comfortable, maximum, vertical, and horizontal strokes), two device widths (60 and 90 mm) and three hand lengths. Horizontal (vertical) strokes deviated from the horizontal axis in the range from ?10.8° to ?13.5° (81.6–88.4°). Maximum strokes appeared to be excessive as these caused 43.8% greater discomfort than did neutral strokes. The 90-mm width also appeared to be excessive as it resulted in 12.3% increased discomfort relative to the 60-mm width. The small-hand group reported 11.9–18.2% higher discomfort ratings, and the percent maximum voluntary exertion of their flexor digitorum superficialis muscle, pertaining to index finger flexion, was also 6.4% higher. These findings should be considered to make smartphone rear interaction more comfortable.

Practitioner Summary: Among neutral, comfortable, maximum, horizontal, and vertical index finger strokes on smartphone rear surfaces, maximum vs. neutral strokes caused 43.8% greater discomfort. Horizontal (vertical) strokes deviated from the horizontal (vertical) axis. Discomfort increased by 12.3% with 90-mm- vs. 60-mm-wide devices. Rear interaction regions of five commercialised smartphones should be lowered 20 to 30 mm for more comfortable rear interaction.  相似文献   


16.
The Problem

Internet of Things (IoT) is providing new services and insights by sensing contextual data but there are growing concerns of privacy risks from users that need immediate attention.

The Reason

The IoT devices and smart services can capture Personally Identifiable Information (PII) without user knowledge or consent. The IoT technology has not reached the desired level of maturity to standardize security and privacy requirements.

The Solution

IoT Privacy by Design is a user-centric approach for enabling privacy with security and safety as a ‘win-win’ positive outcome of IoT offerings, irrespective of business domain. The Proactive and Preventive Privacy (3P) Framework proposed in this paper should be adopted by the IoT stakeholders for building trust and confidence in end users about IoT devices and smart services.  相似文献   


17.
Saman Madinei 《Ergonomics》2018,61(6):831-838
The performance of manual material handling tasks is one major cause of lower back injuries. In the current study, we investigated the influence of the weight configuration of hand loads on trunk muscle activities and the associated spinal stability. Thirteen volunteers each performed static weight-holding tasks using two different 9 kg weight bars (with medial and lateral weight configurations) at two levels of height (low and high) and one fixed horizontal distance (which resulted in constant spinal joint moment across conditions). Results of the current study demonstrated that holding the laterally distributed load significantly reduced activation levels of lumbar and abdominal muscles by 9–13% as compared with holding the medially distributed load. We believe such an effect is due to an elevated rotational moment of inertia when the weight of the load is laterally distributed. These findings suggest that during the design and assessment of manual material handling tasks, such as lifting and carrying, the weight configuration of the hand load should be considered.

Practitioner summary: Elevated trunk muscle activities were found when holding a medially distributed load vs. a laterally distributed load (with an equivalent external moment to the spine), indicating a reduced spinal stability due to the reduced rotational moment of inertia. The configuration of the hand load should be considered when evaluating manual material handling tasks.  相似文献   


18.
Vibration-reducing (VR) gloves have been increasingly used to help reduce vibration exposure, but it remains unclear how effective these gloves are. The purpose of this study was to estimate tool-specific performances of VR gloves for reducing the vibrations transmitted to the palm of the hand in three orthogonal directions (3-D) in an attempt to assess glove effectiveness and aid in the appropriate selection of these gloves. Four typical VR gloves were considered in this study, two of which can be classified as anti-vibration (AV) gloves according to the current AV glove test standard. The average transmissibility spectrum of each glove in each direction was synthesized based on spectra measured in this study and other spectra collected from reported studies. More than seventy vibration spectra of various tools or machines were considered in the estimations, which were also measured in this study or collected from reported studies. The glove performance assessments were based on the percent reduction of frequency-weighted acceleration as is required in the current standard for assessing the risk of vibration exposures. The estimated tool-specific vibration reductions of the gloves indicate that the VR gloves could slightly reduce (<5%) or marginally amplify (<10%) the vibrations generated from low-frequency (<25 Hz) tools or those vibrating primarily along the axis of the tool handle. With other tools, the VR gloves could reduce palm-transmitted vibrations in the range of 5%–58%, primarily depending on the specific tool and its vibration spectra in the three directions. The two AV gloves were not more effective than the other gloves with some of the tools considered in this study. The implications of the results are discussed.Relevance to industryHand-transmitted vibration exposure may cause hand-arm vibration syndrome. Vibration-reducing gloves are considered as an alternative approach to reduce the vibration exposure. This study provides useful information on the effectiveness of the gloves when used with many tools for reducing the vibration transmitted to the palm in three directions. The results can aid in the appropriate selection and use of these gloves.  相似文献   

19.
This paper describes the experimental characterisation of the apparent mass matrix of eight male subjects in standing position and the identification of nonlinearities under both mono-axial and dual-axis whole-body vibration. The nonlinear behaviour of the response was studied using the conditioned response techniques considering models of increasing complexity. Results showed that the cross-axis terms are comparable to the diagonal terms. The contribution of the nonlinear effects are minor and can be endorsed to the change of modal parameters during the tests. The nonlinearity generated by the vibration magnitude is more evident in the subject response, since magnitude-dependent effects in the population are overlaid by the scatter in the subjects’ biometric data. The biodynamic response is influenced by the addition of a secondary vibration axis and, in case of dual-axis vibrations, the overall magnitude has a marginal contribution.

Practitioner Summary: We have measured both the diagonal and cross-axis elements of the apparent mass matrix. The effect of nonlinearities and the simultaneous presence of vibration along two axes are smaller than the inter-subject variability.  相似文献   


20.
This study analysed natural press motions of the index, middle and ring fingers for ergonomic design of the positions and surface angles of the left, middle and right trackball buttons. Finger motions of 26 male participants for naturally pressing the trackball buttons were recorded after the participants adjusted the trackball buttons to their preferred locations for comfortable pressing. The natural positions of the finger pulps formed a symmetrically rainbow-shaped reach zone for the fingers. The natural press angles of the fingers’ motion trajectories to the vertical reference line ranged from 14.2° to 20.5°, suggesting an 18-degree surface from the horizontal line for the trackball buttons. Regression formulas (adjusted R2?=?0.90?±?0.07 and mean squared error?=?8.55?±?7.52?mm) were established to estimate the natural positions of finger pulps from hand segment lengths and joint angles for a population having different hand sizes from this study.

Relevance to industry  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号