首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indium and tin were used as the diffusion barrier between indium-tin oxide (ITO) and polycrystalline-silicon layers to reduce the contact resistance. The ITO/Si contacts may be adopted in thin-film transistor liquid-crystal displays (TFT-LCD) to reduce the number of fabrication steps. With In and Sn layers, contact-resistance values of 5 × 10−3−4×10−3 Ωcm2 were obtained. These values were higher than those of the conventional ITO/Mo/Al/Si contacts (3×10−5−4 × 10−4 Ωcm2) but lower than the values obtained from ITO/Si contacts (about 1×10−2 Ωcm2). The Sn was stable after annealing, but In diffused into Si and lost its function as the diffusion barrier.  相似文献   

2.
200 keV Si implantations were performed in the dose range of 5 × 1012 − 1 × 1014 cm−2 in GaAs grown on Si. For comparison implants were also performed in GaAs layers grown on GaAs substrates. Implanted layers were annealed by both furnace and halogen lamp rapid thermal anneals. Significantly lower donor activations were observed in GaAs layers grown on Si substrates than in the layers grown on GaAs substrates. Extremely low dopant activations were obtained for Be implants in GaAs grown on Si. Photoluminescence and photoreflectance measurements were also performed on the implanted material.  相似文献   

3.
GaAs and InP surfaces have been prepared by gas-phase and liquid-phase polysulfide passivation techniques followed by the deposition of Si interface control layers (ICLs) by e-beam evaporation. For GaAs surfaces, the performance of an ICL consisting of 1.5 nm Si on top of 0.5 nm of Ge has also been evaluated. Metal-insulator-semiconductor diodes with aluminum top electrodes were fabricated on these surfaces using silicon nitride deposited by a remote plasma-enhanced chemical vapor technique or silicon dioxide deposited by a conventional direct plasma-enhanced chemical vapor deposition technique. The quality of the interfaces was analyzed by capacitance-voltage (C-V) measurements and the interface state densities Dit were deduced from the C-V data using the high-low method. Values as low as 1.5 × 1012 eV−1cm−2 were obtained for polysulfide-passivated GaAs surfaces with a Ge-Si or Si ICL, the lowest ever demonstrated using the high-low method for an ex-situ technique not involving GaAs epitaxy. For InP, the Si ICL does not reduce Dit below that of 2 × 1012 eV−1 cm −2 that was obtained for the polysulfide passivated surface. The Si ICL produces an interface that degrades more slowly on exposure to air for both GaAs and InP.  相似文献   

4.
Diffusion of Zn in InP during growth of InP epitaxial layers has been investigated in layer structures consisting of Zn-InP epilayers grown on S-InP and Fe-InP substrates, and on undoped InP epilayers. The layers were grown by metalorganic chemical vapour deposition (MOCVD) atT = 625° C andP = 75 Torr. Dopant diffusion profiles were measured by secondary ion mass spectrometry (SIMS). At sufficiently high Zn doping levels ([Zn] ≥8 × 1017 cm−3) diffusion into S-InP substrates took place, with accumulation of Zn in the substrate at a concentration similar to [S]. Diffusion into undoped InP epilayers produced a diffusion tail at low [Zn] levels, probably associated with interstitial Zn diffusion. For diffusion into Fe-InP, this low level diffusion produced a region of constant Zn concentration at [Zn] ≈ 3 × 1016 cm−3, due to kick-out of the original Fe species from substitutional sites. We also investigated diffusion out of (Zn, Si) codoped InP epilayers grown on Fe-InP substates. The SIMS profiles were characterised by a sharp decrease in [Zn] at the epilayer-substrate interface; the magnitude of this decrease corresponded to that of the Si donor level in the epilayer. For [Si] ≫ [Zn] in the epilayer no Zn diffusion was observed; Hall measurements indicated that the donor and acceptor species in those samples were electrically active. All these results are consistent with the presence of donor-acceptor interactions in InP, resulting in the formation of ionised donor-acceptor pairs which are immobile, and do not contribute to the diffusion process.  相似文献   

5.
Halogen lamp rapid thermal annealing was used to activate 100 keV Si and 50 keV Be implants in In0.53Ga0.47As for doses ranging between 5 × 1012−4 × 1014 cm−2. Anneals were performed at different temperatures and time durations. Close to one hundred percent activation was obtained for the 4.1 × 1013 cm−2 Si-implant, using an 850° C/5 s anneal. Si in-diffusion was not observed for the rapid thermal annealing temperatures and times used in this study. For the 5 × 1013 cm−2 Be-implant, a maximum activation of 56% was measured. Be-implant depth profiles matched closely with gaussian profiles predicted by LSS theory for the 800° C/5 s anneals. Peak carrier concentrations of 1.7 × 1019 and 4 × 1018 cm−3 were achieved for the 4 × 1014 cm−2 Si and Be implants, respectively. For comparison, furnace anneals were also performed for all doses.  相似文献   

6.
Technological modes in which high-efficiency GaAs: Si/GaAs: C tunneling structures can be fabricated by MOS-hydride epitaxy have been determined. It was demonstrated that use of C and Si dopants makes it possible to obtain a p-n junction with low diffusion spreading of dopant profiles. It was shown that fabrication of high-efficiency tunnel diodes requires that GaAs layers should be doped with acceptor and donor impurities to a level of ∼9 × 1019 cm−3. Tunnel diodes were fabricated using the tunnel structures and their current-voltage characteristics were studied. Peak current densities J p ≈ 1.53 kA cm−2 and a differential resistance R ≈ 30 mΩ under a reverse bias were obtained in the tunnel diodes.  相似文献   

7.
Ion implantation into III–V nitride materials is animportant technology for high-power and high-temperature digital and monolithic microwave integrated circuits. We report the results of the electrical, optical, and surface morphology of Si ion-implanted GaN films using furnace annealing. We demonstrate high sheet-carrier densities for relatively low-dose (natoms=5×1014 cm−2) Si implants into AlN/GaN/sapphire heteroepitaxial films. The samples that were annealed at 1150°C in N2 for 5 min exhibited a smooth surface morphology and a sheet electron concentration ns ∼9.0×1013 cm−2, corresponding to an estimated 19% electrical activation and a 38% Si donor activation in GaN films grown on sapphire substrates. Variable-temperature Hall-effect measurem entsindicate a Si donor ionization energy ∼15 meV.  相似文献   

8.
P + −n −n + silicon radiation detectors made of high resistivity Si material (ρ ≥ 2 kΩ-cm) were irradiated to a neutron fluence of a few times of 1013 n/cm2. Dependence of detector leakage current, reverse bias capacitance, and effective doping concentration of the Si substrate on the neutron fluence have been systematically studied. It has been found that the detector leakage current increases linearly with neutron fluence in the range studies, with a damage constant of α = 9 × 10−17 A/cm(ΔI = αΔAϕn @#@), and the C-V characteristics of detectors irradiated to ϕn > 1012 n/cm2 become frequency dependent. Models using several defect levels in the band gap are proposed to describe the frequency dependent C-V effects and the electrical field profile after high neutron fluence irradiation. This research was supported by the U.S. Department of Energy: Contract No. DE-AC02-76CH00016.  相似文献   

9.
This paper discusses the photoluminescence spectra of 500-nm-thick layers of SiO2 implanted with Si ions at doses of 1.6×1016, 4×1016, and 1.6×1017 cm−2 and then annealed in the steady-state region (30 min) and pulsed regime (1 s and 20 ms). Structural changes were monitored by high-resolution electron microscopy and Raman scattering. It was found that when the ion dose was decreased from 4×1016 cm−2 to 1.6×1016 cm−2, generation of centers that luminesce weakly in the visible ceased. Moreover, subsequent anneals no longer led to the formation of silicon nanocrystallites or centers that luminesce strongly in the infrared. Annealing after heavy ion doses affected the photoluminescence spectrum in the following ways, depending on the anneal temperature: growth (up to ∼700 °C), quenching (at 800–900 °C), and the appearance of a very intense photoluminescence band near 820 nm (at >900 °C). The last stage corresponds to the appearance of Si nanocrystallites. The dose dependence is explained by a loss of stability brought on by segregation of Si from SiO2 and interactions between the excess Si atoms, which form percolation clusters. At low heating levels, the distinctive features of the anneals originate predominantly with the percolation Si clusters; above ∼700 °C these clusters are converted into amorphous Si-phase nanoprecipitates, which emit no photoluminescence. At temperatures above 900 °C the Si nanocrystallites that form emit in a strong luminescence band because of the quantum-well effect. The difference between the rates of percolation and conversion of the clusters into nanoprecipitates allows the precipitation of Si to be controlled by combinations of these annealings. Fiz. Tekh. Poluprovodn. 32, 1371–1377 (November 1998)  相似文献   

10.
Al,Al/C and Al/Si implantations in 6H-SiC   总被引:1,自引:0,他引:1  
Multiple-energy Al implantations were performed with and without C or Si coimplantations into 6H-SiC epitaxial layers and bulk substrates at 850°C. The C and Si co-implantations were used as an attempt to improve Al acceptor activation in SiC. The implanted material was annealed at 1500, 1600, and 1650°C for 45 min. The Al implants are thermally stable at all annealing temperatures and Rutherford backscattering via channeling spectra indicated good lattice quality in the annealed Al-implanted material. A net hole concentration of 8 × 1018 cm−3 was measured at room temperature in the layers implanted with Al and annealed at 1600°C. The C or Si co-implantations did not yield improvement in Al acceptor activation. The co-implants resulted in a relatively poor crystal quality due to more lattice damage compared to Al implantation alone. The out-diffusion of Al at the surface is more for 5Si co-implantation compared to Al implant alone, where 5Si means a Si/Al dose ratio of 5.  相似文献   

11.
Amorphization and solid-phase epitaxial growth were studied in C-cluster ion-implanted Si. C7H7 ions were implanted at a C-equivalent energy of 10 keV to C doses of 0.1 × 1015 cm−2 to 8.0 × 1015 cm−2 into (001) Si wafers. Transmission electron microscopy revealed a C amorphizing dose of ~5.0 ×  1014 cm−2. Annealing of amorphized specimens to effect solid-phase epitaxial growth resulted in defect-free growth for C doses of 0.5 × 1015 cm−2 to 1.0 × 1015 cm−2. At higher doses, growth was defective and eventually polycrystalline due to induced in-plane tensile stress from substitutional C incorporation.  相似文献   

12.
Silicon doped epitaxial layers of InP have been prepared by low pressure metalorganic chemical vapour deposition, using disilane as the source of silicon. Trimethylindium and phosphine were used as the source reactants for the growth. The doping characteristics for the epitaxial growth were investigated at substrate temperatures in the range 525–750° C and for doping levels in the range 4 × 1016−2 × 1019 cm−3. The results indicated that the Si doping level is proportional to the disilane flow rate. The Si incorporation rate increases with temperature, but becomes temperature-independent forT > 620° C. Comparison between Si concentrations determined by Secondary Ion Mass Spectroscopy, donor levels determined by Hall effect measurements, and optical measurements at 7 K indicates that approximately 50% of the Si in the InP is in the form of electrically inactive species. Uniform doping over 5 cm wafer dimensions has been obtained for growth atT = 625° C.  相似文献   

13.
Solid boron and antimony doping of silicon and SiGe grown by molecular beam epitaxy using disilane and germane as sources has been studied. Elemental boron is a well behaved p-type dopant. At effusion cell temperatures of 1700–1750°C, hole carrier concentrations in the 1020 cm−3 range have been obtained. Elemental antimony doping shows surface segregation problems. For uniformly doped layers, the as-grown materials do not show n-type conductivity. Electron concentrations in the 1017 cm−3 range were obtained by post-growth conventional and rapid thermal annealing at 900 and 1000°C, respectively. The electron Hall mobility improves with optimum annealing time. Delta doping of buried layers exhibits slightly better incorporation behavior including significant surface riding effects.  相似文献   

14.
In this study we evaluate the effects of dual implantation with different doses of Si and P on dopant activation efficiency and carrier mobility in InP:Fe. The implants were activated by a rapid thermal annealing step carried out in an optimized phosphoruscontaining ambient. For high dose implants (1014–1015 cm−2), which are typically employed for source/drain regions in FETs, dual implantation of equal doses of Si and P results in a higher sheet carrier concentration and lower sheet resistance. For 1014 cm−2 Si implants at 150 keV, the optimal P co-implant dose is equal to the Si dose for most anneal temperatures. We obtain an activation efficiency of ∼70% for dual implanted samples annealed at 850° C for 10 sec. The high activation efficiencies and low sheet resistances obtained in this study emphasize the importance of stoichiometry control through the use of P co-implants and a phosphorus-containing ambient during the thermal processing of InP.  相似文献   

15.
The choice of the bottom electrode or barrier layer plays an important role in determining the electrical and structural properties of metal/ferroelectric/metal thin film capacitors. A substantial improvement of the electrical and structural properties of the capacitors was found by using RuO2 as a bottom electrode. Electrical measurement on a capacitor with a structure of BaTiO3(246 nm)/RuO2 (200 nm)/SiO2/Si, where the BaTiO3 thin film was deposited at room temperature, showed a dielectric constant of around 15, leakage current density of 1.6 × 10−7A/cm2 at 4 V, a dc conductivity of 9.8 × 1014S/cm, and a capacitance per unit area of 5.6 × 104pF/cm2. A similar structure but with polycrystalline BaTiO3 (273 nm) as the dielectric deposited at 680°C showed a dielectric constant of 290, leakage current density of 1.7 × 10−3A/cm2 at 4 V, a dc conductivity of 1.2 × 10−8 S/cm, and a capacitance per unit area of 9.4 × 105 pF/cm2. Scanning electron microscopy analysis on the films showed differences in the microstructure due to the use of different bottom electrode materials, such as RuO2 or Pd.  相似文献   

16.
SiO2 layers containing implanted excess Si are irradiated with Xe ions with an energy of 130 MeV and doses of 3 × 1012–1014 cm−2. In the samples irradiated with a dose of 3 × 1012 cm−2, ∼1012 cm−2 segregated clusters 3–4 nm in dimension are detected by transmission electron microscopy. With increasing dose, the dimensions and number of these clusters increase. In the photoluminescence spectrum, a 660- to 680-nm band is observed, with the intensity dependent on the dose. After passivation of the sample with hydrogen at 500°C, the band disappears, but a new ∼780-nm band typical of Si nanocrystals becomes evident. On the basis of the entire set of data, it is concluded that the 660- to 680-nm band is associated with imperfect Si nanocrystals grown in the tracks of Xe ions due to high ionization losses. The nonmonotonic dependence of the photoluminescence intensity on the dose is attributed to the difference between the diameters of tracks and the diameters of the displacements’ cascades responsible for defect formation.  相似文献   

17.
Electrical activation studies were carried out on Si-implanted Al0.33Ga0.67N as a function of ion dose, annealing temperature, and annealing time. The samples were implanted at room temperature with Si ions at 200 keV in doses ranging from 1 × 1014 cm−2 to 1 × 1015 cm−2, and subsequently proximity-cap annealed from 1150°C to 1350°C for 20 min to 60 min in a nitrogen environment. One hundred percent electrical activation efficiency was obtained for Al0.33Ga0.67N samples implanted with a dose of 1 × 1015 cm−2 after annealing at either 1200°C for 40 min or at 1300°C for 20 min. The samples implanted with doses of 1 × 1014 cm−2 and 5 × 1014 cm−2 exhibited significant activations of 74% and 90% after annealing for 20 min at 1300°C and 1350°C, respectively. The mobility increased as the annealing temperature increased from 1150°C to 1350°C, showing peak mobilities of 80 cm2/V s, 64 cm2/V s, and 61 cm2/V s for doses of 1 × 1014 cm−2, 5 × 1014 cm−2, and 1 × 1015 cm−2, respectively. Temperature-dependent Hall-effect measurements showed that most of the implanted layers were degenerately doped. Cathodoluminescence measurements for all samples exhibited a sharp neutral donor-bound exciton peak at 4.08 eV, indicating excellent recovery of damage caused by ion implantation.  相似文献   

18.
GaN layers have been grown by plasma-assisted molecular beam epitaxy on AlN-buffered Si(111) substrates. An initial Al coverage of the Si substrate of aproximately 3 nm lead to the best AlN layers in terms of x-ray diffraction data, with values of full-width at half-maximum down to 10 arcmin. A (2×2) surface reconstruction of the AlN layer can be observed when growing under stoichiometry conditions and for substrate temperatures up to 850°C. Atomic force microscopy reveals that an optimal roughness of 4.6 nm is obtained for AlN layers grown at 850°C. Optimization in the subsequent growth of the GaN determined that a reduced growth rate at the beginning of the growth favors the coalescence of the grains on the surface and improves the optical quality of the film. Following this procedure, an optimum x-ray full-width at half-maximum value of 8.5 arcmin for the GaN layer was obtained. Si-doped GaN layers were grown with doping concentrations up to 1.7×1019 cm−3 and mobilities approximately 100 cm2/V s. Secondary ion mass spectroscopy measurements of Be-doped GaN films indicate that Be is incorporated in the film covering more than two orders of magnitude by increasing the Be-cell temperature. Optical activation energy of Be acceptors between 90 and 100 meV was derived from photoluminescence experiments.  相似文献   

19.
This paper presents the progress in the molecular beam epitaxy (MBE) growth of HgCdTe on large-area Si and CdZnTe substrates at Raytheon Vision Systems. We report a very high-quality HgCdTe growth, for the first time, on an 8 cm × 8 cm CdZnTe substrate. This paper also describes the excellent HgCdTe growth repeatability on multiple 7 cm × 7 cm CdZnTe substrates. In order to study the percentage wafer area yield and its consistency from run to run, small lots of dual-band long-wave infrared/long-wave infrared triple-layer heterojunction (TLHJ) layers on 5 cm × 5 cm CdZnTe substrates and single-color double-layer heterojunction (DLHJ) layers on 6-inch Si substrates were grown and tested for cutoff wavelength uniformity and micro- and macrovoid defect density and uniformity. The results show that the entire lot of 12 DLHJ-HgCdTe layers on 6-inch Si wafers meet the testing criterion of cutoff wavelength within the range 4.76 ± 0.1 μm at 130 K and micro- and macrovoid defect density of ≤50 cm−2 and 5 cm−2, respectively. Likewise, five out of six dual-band TLHJ-HgCdTe layers on 5 cm × 5 cm CdZnTe substrates meet the testing criterion of cutoff wavelength within the range 6.3 ± 0.1 μm at 300 K and micro- and macrovoid defect density of ≤2000 cm−2 and 500 cm−2, respectively, on the entire wafer area. Overall we have found that scaling our HgCdTe MBE process to a 10-inch MBE system has provided significant benefits in terms of both wafer uniformity and quality.  相似文献   

20.
Room temperature and elevated temperature sulfur implants were performed into semi-insulating GaAs and InP at variable energies and fluences. The implantations were performed in the energy range 1–16 MeV. Range statistics of sulfur in InP and GaAs were calculated from the secondary ion mass spectrometry atomic concentration depth profiles and were compared with TRIM92 values. Slight in-diffusion of sulfur was observed in both InP and GaAs at higher annealing temperatures for room temperature implants. Little or no redistribution of sulfur was observed for elevated temperature implants. Elevated temperature implants showed higher activations and higher mobilities compared to room temperature implants in both GaAs and InP after annealing. Higher peak electron concentrations were observed in sulfur-implanted InP (n ≈ 1 × 1019 cm−3) compared to GaAs (n ≈ 2 × 1018 cm−3). The doping profile for a buried n+ layer (n ≈ 3.5 × 1018 cm−3) of a positive-intrinsic-negative diode in GaAs was produced by using Si/S coimplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号