首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 618 毫秒
1.
The objective of this investigation was to develop an injectable, depot-forming drug delivery system for insulin based on microparticle technology to maintain constant plasma drug concentrations over prolonged period of time for the effective control blood sugar levels. Formulations were optimized with two well-characterized biodegradable polymers namely, poly(DL-lactide-co-glycolide) and poly-epsilon-caprolactone and evaluated in vitro for physicochemical characteristics, drug release in phosphate buffered saline (pH 7.4), and evaluated in vivo in streptozotocin-induced hypoglycemic rats. With a large volume of internal aqueous phase during w/o/w double emulsion solvent evaporation process and high molecular weight of the polymers used, we could not achieve high drug capture and precise control over subsequent release within the study period of 60 days. However, this investigation revealed that upon subcutaneous injection, the biodegradable depot-forming polymeric microspheres controlled the drug release and plasma sugar levels more efficiently than plain insulin injection. Preliminary pharmacokinetic evaluation exhibited steady plasma insulin concentration during the study period. These formulations, with their reduced frequency of administration and better control over drug disposition, may provide an economic benefit to the user compared with products currently available for diabetes control.  相似文献   

2.
Background: The aim of this study was to develop chitosan microspheres for nasal delivery of ondansetron hydrochloride (OND). Method: Microspheres were prepared with spray-drying method using glutaraldehyde as the crosslinking agent. Microspheres were characterized in terms of morphology, particle size, zeta potential, production yield, drug content, encapsulation efficiency, and in vitro drug release. Results: All microspheres were spherical in shape with smooth surface and positively charged. Microspheres had also high encapsulation efficiency and the suitable particle size for nasal administration. In vitro studies indicated that all crosslinked microspheres had a significant burst effect, and sustained drug release pattern was observed until 24 hours following burst drug release. Nasal absorption of OND from crosslinked chitosan microspheres was evaluated in rats, and pharmacokinetic parameters of OND calculated from nasal microsphere administration were compared with those of both nasal and parenteral administration of aqueous solutions of OND. In vivo data also supported that OND-loaded microspheres were also able to attain a sustained plasma profile and significantly larger area under the curve values with respect to nasal aqueous solution of OND. Conclusion: Based on in vitro and in vivo data, it could be concluded that crosslinked chitosan microspheres are considered as a nasal delivery system of OND.  相似文献   

3.
The aim of the present study was to verify the potential of chitosan-thio-butyl-amidine (TBA) microspheres as carrier systems for controlled drug delivery. In this study microspheres were prepared utilizing water in oil (w/o) emulsification solvent evaporation technique. A concentration of 0.5% of chitosan-TBA conjugate displaying 100 µM thiol groups per gram polymer was used in the aqueous phase of the emulsion in order to prepare microspheres. The obtained non-aggregated free-flowing microspheres were examined with conventional light microscope as well as scanning electron microscopy (SEM). The microscopic images indicated that the prepared chitosan-TBA microspheres were of spherical shape and smooth surface while microparticles obtained from the unmodified chitosan were of porous structure and non-spherical shape. Particle size distribution was determined to be in the range from 1 to 59 µm. The free thiol group content of chitosan-TBA microspheres prepared with an aqueous phase of pH 2, 5, and 6.5 were determined to be 71.4, 49.4, and 8.2 µM/g polymer, respectively. Furthermore, results attained from in vitro release studies with fluorescein isothiocyanate labelled dextran (FITC-dextran) loaded chitosan-TBA microspheres showed a controlled release rate for more than three hours while the control reached the maximum peak level of release already within an hour. According to these results, chitosan-TBA microspheres seem to be a promising tool in transmucosal drug delivery for poorly absorbed therapeutic agents.  相似文献   

4.
The aim of the present study was to verify the potential of chitosan-thio-butyl-amidine (TBA) microspheres as carrier systems for controlled drug delivery. In this study microspheres were prepared utilizing water in oil (w/o) emulsification solvent evaporation technique. A concentration of 0.5% of chitosan-TBA conjugate displaying 100 µM thiol groups per gram polymer was used in the aqueous phase of the emulsion in order to prepare microspheres. The obtained non-aggregated free-flowing microspheres were examined with conventional light microscope as well as scanning electron microscopy (SEM). The microscopic images indicated that the prepared chitosan-TBA microspheres were of spherical shape and smooth surface while microparticles obtained from the unmodified chitosan were of porous structure and non-spherical shape. Particle size distribution was determined to be in the range from 1 to 59 µm. The free thiol group content of chitosan-TBA microspheres prepared with an aqueous phase of pH 2, 5, and 6.5 were determined to be 71.4, 49.4, and 8.2 µM/g polymer, respectively. Furthermore, results attained from in vitro release studies with fluorescein isothiocyanate labelled dextran (FITC-dextran) loaded chitosan-TBA microspheres showed a controlled release rate for more than three hours while the control reached the maximum peak level of release already within an hour. According to these results, chitosan-TBA microspheres seem to be a promising tool in transmucosal drug delivery for poorly absorbed therapeutic agents.  相似文献   

5.
Background: Various approaches have been used to retain the dosage form in stomach as a way of increasing the gastric residence time, including floatation systems; high-density systems; mucoadhesive systems; magnetic systems; unfoldable, extensible, or swellable systems; and superporous hydrogel systems. Aim?: The objective of this study was to prepare and evaluate floating microspheres of rosiglitazone maleate for the prolongation of gastric residence time. Method: The microspheres were prepared by solvent diffusion–evaporation method using ethyl cellulose and hydroxypropylmethylcellulose. A full factorial design was applied to optimize the formulation. Results: Preliminary studies revealed that the polymer:drug ratio, concentration of polymer, and stirring speed significantly affected the characteristics of microspheres. The optimum batch exhibited a prolonged drug release, remained buoyant for >12 hours, high entrapment efficiency, and particle size in the order of 350 μm. Conclusion: The results of 32 full factorial design revealed that the concentration of ethylcellulose 7 cps (X1) and stirring speed (X2) significantly affected drug entrapment efficiency, percentage release after 8 h and particle size of microspheres.  相似文献   

6.
Deficiency manifestations because of pancreatic insufficiency are treated by oral administration of pancreatic enzymes. As pancreatic enzymes get denatured in hostile acidic conditions of stomach, this investigation was aimed at formulating multiparticulates of pancreatic enzymes coated with enteric polymers such as eudragit L100, cellulose acetate phthalate, and hydroxyl propyl methyl cellulose phthalate, which will circumvent gastric inactivation in addition to providing optimal mixing with chyme. Pancreatin microspheres were prepared by emulsification phase separation by nonsolvent addition and solvent evaporation techniques. This process was optimized for core : coat ratio (1:0.5), stirrer speed (350-400 rpm), dispersant concentration, and amount of nonsolvent added to precipitate microspheres. Optimized formulations were assessed for % enzyme content, acid resistance, flow properties, particle size, particle morphology (by standard electron microscopy), compatibility of drug and polymer in formulation (by differential scanning calorimetry), in vitro release kinetics, and in vivo efficacy study in pancreatitis-induced animal model. Capsules containing enteric-coated pancreatin microspheres offered adequate protection to enzymes and prevented their denaturation in acidic environment. Developed multiparticulate dosage forms promoted effective mixing, instant and complete in vitro release compared with marketed tablets.  相似文献   

7.
Drug delivery systems based on polymer microspheres have received considerable attention. Ceftiofur sodium and ceftiofur hydrochloride is widely used for the treatment of bacterial diseases in animals but the delivery in vivo has not been reported. In this paper, we report the synthesis of microspheres from gelatin and PLGA, two kinds of typical natural and artificial materials, for loading ceftiofur and the in vivo investigation of the pharmacokinetics in beagle dogs. By controlling the synthesis parameters, gelatin and PLGA microspheres with diameter between 5 and 35 microns were obtained. Assay procedures based on high performance liquid chromatography were evaluated and confirmed. The dogs were randomly divided into three groups, i.e., control group, gelatin group, and PLGA group and administrated via intravenous injection. Plasma concentrations of ceftiofur over time were measured and analyzed. Results indicate that the main kinetic parameters do not show significant difference for the gelatin group and control group, but the area under the curve, plasma half-life, apparent volume of distribution, and clearance ratio of PLGA group show significant difference from the gelatin group and the control group. The PLGA microspheres show a low area under the curve but long time release.  相似文献   

8.
This study was performed to obtain prolonged drug release with biodegradable in situ forming implants for the local delivery of metronidazole to periodontal pockets. The effect of polymer type (capped and uncapped PLGA), solvent type (water-miscible and water-immiscible) and the polymer/drug ratio on in vitro drug release studies were investigated. In situ implants with sustained metronidazole release and low initial burst consisted of capped PLGA and N-methyl-2-pyrolidone as solvent. Mucoadhesive polymers were incorporated into the in situ implants in order to modify the properties of the delivery systems towards longer residence times in vivo. Addition of the polymers changed the adhesiveness and increased the viscosity and drug release of the formulations. However, sustained drug release over 10 days was achievable. Biodegradable in situ forming implants are therefore an attractive delivery system to achieve prolonged release of metronidazole at periodontal therapy.  相似文献   

9.
Methotrexate-loaded biodegradable polyanhydride microspheres were prepared by modified hot-melt technique and aqueous solvent evaporation technique. The effect of particle size, drug loading and microencapsulation technique on the in vitro drug release was studied. The in vitro release of methotrexate was evaluated using an automated flow-through cell system. The release profile consisted of burst release and sustained release phases. The burst release from the microspheres prepared by the modified technique was lower than that from the aqueous solvent evaporation technique. In addition, the microspheres with lower loadings released smaller amounts during the burst release phase. For a given loading and processing technique, the amount released by burst decreased with an increase in particle size. The microspheres prepared by the modified hot-melt technique with 10% loading and 177-250 μm size fraction gave desirable prolonged release. This formulation was tested in vivo in rats by subcutaneous implantation. The peak serum level of methotrexate was reached between 15-18 hours compared to that between 0-3 hours observed following the administration of an equivalent dose of methotrexate solution. No microspheres were found at the site of implantation at 48 hours post-implantation.  相似文献   

10.
The aim of this work is to develop curcumin-loaded hollow mesoporous silica microspheres (HMSMs@curcumin) to improve the poor oral bioavailability of curcumin. Hollow mesoporous silica microspheres (HMSMs) were synthesized in facile route using a hard template. HMSMs and HMSMs@curcumin were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption/desorption measurements, differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), and X-ray diffraction (XRD). In addition, to demonstrate the potential application of the HMSMs@curcumin, cytotoxicity, in vitro release behavior and in vivo pharmacokinetics of curcumin loaded in these HMSMs were investigated by using of Caco-2 cells and Sprague-Dawley (SD) rats, respectively. These mono-dispersed HMSMs exhibited high drug loading ratio and encapsulation efficiency due to the mesoporous shell and hollow core. The excellent characteristics of HMSMs such as mono-dispersed morphology, smooth surface, uniform, ordered and size-narrowing mesopores resulted in a good in vitro release profile of curcumin from HMSMs@curcumin. Moreover, an impressive improvement in the oral absorption of curcumin and prolonged systemic circulation time were achieved in the in vivo animal studies. In addition, the good biocompatibility of developed HMSMs with Caco-2 cells was confirmed based on the in vitro cytotoxicity assay. In conclusion, this system demonstrated a great potential for efficient delivery of curcumin in vitro and in vivo, suggesting a good prospect for its application in clinic for therapeutic drug delivery in future.  相似文献   

11.
In this paper, we present in vitro and in vivo release data on pH-sensitive microspheres of Eudragit L100, Eudragit RS100 and their blend systems prepared by double emulsion-solvent evaporation technique for oral delivery of insulin. Of the three systems developed, Eudragit L100 was chosen for preclinical studies. Insulin was encapsulated and in vitro experiments performed on insulin-loaded microspheres in pH 1.2 media did not release insulin during the first 2 h, but maximum insulin was released in pH 7.4 buffer media from 4 to 6 h. The microspheres were characterized by scanning electron microscopy to understand particle size, shape and surface morphology. The size of microspheres ranged between 1 and 40 μm. Circular dichroism spectra indicated the structural integrity of insulin during encapsulation as well as after its release in pH 7.4 buffer media. The in vivo release studies on diabetic-induced rat models exhibited maximum inhibition of up to 86%, suggesting absorption of insulin in the intestine.  相似文献   

12.
The aim of the present work was to prepare floating microspheres of atenolol as prolonged release multiparticulate system and evaluate it using novel multi-compartment dissolution apparatus. Atenolol loaded floating microspheres were prepared by emulsion solvent evaporation method using 32 full factorial design. Formulations F1 to F9 were prepared using two independent variables (polymer ratio and % polyvinyl alcohol) and evaluated for dependent variables (particle size, percentage drug entrapment efficiency and percentage buoyancy). The formulation(F8) with particle size of 329?±?2.69 µm, percentage entrapment efficiency of 61.33% and percentage buoyancy of 96.33% for 12?h was the of optimized formulation (F8). The results of factorial design revealed that the independent variables significantly affected the particle size, percentage drug entrapment efficiency and percentage buoyancy of the microspheres. In vitro drug release study revealed zero order release from F8 (98.33% in 12?h). SEM revealed the hollow cavity and smooth surface of the hollow microspheres.  相似文献   

13.
In this investigation, poly(lactide-co-glycolide) (PLGA) gel implants and microspheric depot systems of bleomycin (BLM) were formulated and evaluated in vivo in mice bearing transplantable solid tumor (fibrosarcoma). The pharmacodynamic studies showed that both the formulations retarded tumor growth significantly (p<0.05) when compared to the control animals (without any drug treatment). Preliminary pharmacokinetic studies illustrated controlled release of the drug into the systemic circulation to elicit the anti-neoplastic action. The gel implants showed better release characteristics and greater pharmacodynamic action when compared to the microspheres, thus demonstrating the feasibility of employing biodegradable depot polymer gel matrix for chronic cancer therapy.  相似文献   

14.
This investigation is to find a prolonged or delayed drug release system, exclusively for the treatment of hepatitis‐B to reduce the side effects, which arise when conventional solid dose forms are administered. To pursue this goal, lamivudine‐loaded Eudragit‐coated pectin microspheres have been formulated employing water/oil (W/O) emulsion evaporation strategy. The formulation was optimised using a 34 factorial design. A drug to polymer ratio of 1:2, the surfactant of 1 ml, the volume of 50 ml of processing medium with a stirring speed of 2500 rpm were found to be the optimal parameters to obtain the lamivudine‐loaded Eudragit‐coated pectin microspheres formulation with a high drug entrapment efficiency of 89.44% ± 1.44%. The in vitro release kinetics of lamivudine was a suitable fit to the Higuchi model, indicating a diffusion‐controlled release with anomalous transport. The obtained microspheres were then subjected to different characterisation studies, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X‐ray diffraction (XRD). The results of this study clearly indicate that Eudragit‐coated pectin microspheres could be the promising controlled release carriers for colon‐specific delivery of lamivudine in the presence of rat cecal content.  相似文献   

15.
ABSTRACT

In this investigation, poly(lactide-co-glycolide) (PLGA) gel implants and microspheric depot systems of bleomycin (BLM) were formulated and evaluated in vivo in mice bearing transplantable solid tumor (fibrosarcoma). The pharmacodynamic studies showed that both the formulations retarded tumor growth significantly (p < 0.05) when compared to the control animals (without any drug treatment). Preliminary pharmacokinetic studies illustrated controlled release of the drug into the systemic circulation to elicit the anti-neoplastic action. The gel implants showed better release characteristics and greater pharmacodynamic action when compared to the microspheres, thus demonstrating the feasibility of employing biodegradable depot polymer gel matrix for chronic cancer therapy.  相似文献   

16.
The objective of this study was to develop a novel floating in situ gel system for sustained drug delivery of acetohydroxamic acid (FIGA) for eradication of Helicobacter pylori (H. pylori). The FIGA was prepared by dissolving the different concentration of gellan in deionized water at 80 degrees C. Different concentration of drug and calcium carbonate as floating agents were dispersed with stirring. In vitro results revealed that in situ gelling formulation forms rigid gels instantaneously and floated for longed period time of time in SGF pH 1.2. The formulation parameters, such as concentration of polymer, concentration of calcium carbonate, and concentration of drug, affected the in vitro drug release characteristic significantly. Absence of drug-polymer interaction was confirmed by differential scanning calorimetry analysis. The in vivo H. pylori clearance efficacy of prepared FIGA in reference to acetohydroxamic acid suspension following repeated oral administration to H. pylori-infected Mongolian gerbils was examined by microbial culture method. FIGA showed a significant anti-H. pylori effect in the in vivo gerbil model. It was noted that the required amount of acetohydroxamic acid for eradication of H. pylori was very less in FIGA than in the corresponding acetohydroxamic acid suspension. From the above results, it was concluded that the floating in situ gelling system has feasibility for forming rigid gels in the stomach and eradicated H. pylori from the gastrointestinal tract more effectively than acetohydroxamic acid suspension because of the prolonged gastrointestinal residence time of the formulation.  相似文献   

17.
The aim of the study was to develop a proniosomal system for famotidine (FAM), a potent H2 receptor antagonist that could efficiently deliver entrapped drug over a prolonged period of time. The proniosomal system was formulated by selecting various ratios of Span 60 and cholesterol using a coacervation-phase separation method. The formulated systems were characterised for drug excipient compatibility studies by Fourier transform infrared spectroscopy (FTIR), vesicle size determination by the particle size analyser, % drug encapsulation, drug-release profiles, field emission scanning electron microscopy (FESEM) for surface morphology, X-ray diffraction (XRD) and vesicular stability at different storage conditions. By using this method, the % drug loading that resulted by the encapsulation of proniosome was found to be 78%–89%. Increase in cholesterol and surfactant concentration increases encapsulation efficiency, but further increment decreases encapsulation. In vitro drug-release studies showed prolonged release of entrapped famotidine. The highest % cumulative drug release was achieved in formulation FAM2 (96%) in 24 hours. The ex vivo data on the release of famotidine from proniosomal formulations have shown significantly increased per cent release and flux in comparison to the same dose of marketed preparation of famotidine. Stability studies were carried out in refrigerated conditions, and higher drug retention was observed. It is evident from this study that proniosomes are a promising prolonged delivery system for famotidine and have reasonably good stability characteristics.  相似文献   

18.
The aim of the present study was to extend the use of flurbiprofen in clinical settings by avoiding its harmful gastric effects. For this purpose, we designed the controlled release solid lipid flurbiprofen microspheres (SLFM) by emulsion congealing technique. Drug was entrapped into gastro resistant biodegradable beeswax microspheres which were prepared at different drug/beeswax ratios 1:1, 1:2 and 1:3 using gelatin and tween 20 as emulsifying agents. The effect of emulsifiers and the effect drug/beeswax ratios were studied on hydration rate, encapsulating efficiency, micromeritic properties, scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (X-RD) analysis and in vitro drug release at pH 1.2 for 2 h and at pH 6.8 for 10 h. SEM revealed that microspheres made with tween 20 were smooth while microspheres made with gelatin showed porous morphology, however, they were all spherical in nature. The practical yield (recovery) showed a dependence on drug-beeswax ratio and it was variable from 53 to 84%. High loading encapsulating efficiency of flurbiprofen from 8 to 94% was achieved. FTIR and DSC analysis confirmed the absence of any drug polymer interaction indicating drug stability during microencapsulation. X-RD of pure flurbiprofen shows sharp peaks, which decreases on encapsulation, indicating decrease in the crystallinity of drug in microspheres. The micromeritic studies confirmed the presence of excellent and good flow properties of microspheres. Entrapment efficiency, morphology, practical yield, hydration rate, flow properties demonstrated their dependence on the HLB value of emulsifiers and emulsifiers with higher HLB were found more appropriate for effective microencapsulation of flurbiprofen. The release kinetics followed zero order mechanism of drug release at pH 6.8. Release pattern depends on the morphology of flurbiprofen microspheres and amount of beeswax used in the microspheres preparation. The microspheres prepared with high HLB values i.e., tween 20 showed effective control of drug release from microspheres. The absence of drug release at pH 1.2 proved the suitability of beeswax for its use as a gastro resistant material.  相似文献   

19.
Polymer chain entanglements in organic solvents can be considered a key parameter in the formation of non-spherical beads when electrospraying is employed. The shape of micro/nanometric drug delivery systems plays a major role since it can affect circulation, extravasation, distribution and in vivo clearance of the devices. In this frame, we investigated the influence of polymer processing parameters on the design of polylactic-co-glycolic acid non-spherical microdevices loaded with triamcinolone acetonide (TrA), a sparingly water soluble corticosteroid, prepared by electrospraying technique through a one-step process. In particular, we verified that the formation of non-spherical MDs is related to the presence of entanglements among polymer chains to select the optimal solution to be sprayed. The addition of TrA did not substantially affect the particle morphology in terms of size, size distribution and circularity at all the tested drug loadings. Furthermore, the drug could be released for a prolonged period, with controlled and reproducible kinetics for over 3 weeks. The mathematical modeling of release profiles highlighted that the release is mainly driven by degradation, at a higher extent in the case of low drug loading.  相似文献   

20.
Objective: Microencapsulation of the anti-inflammatory drug aceclofenac (ACE) was investigated as a means of controlling drug release and minimizing or eliminating local side effects. Method: Microspheres were prepared by a spray-drying technique using solutions of ACE and three polymers, namely, carbopol, chitosan, and polycarbophil, in different weight ratios. Results: The spray-dried mucoadhesive microspheres were characterized in terms of shape (scanning electron microscope), size (6.60–8.40 μm), production yield (34.10–55.62%), and encapsulation efficiency (58.14–90.57%). In vitro release studies were performed in phosphate buffer (pH 6.8) up to 10 hours. The spray-drying process of solutions of ACE with polymeric blends can give prolonged drug release. The in vitro release data were well fit into Higuchi and Korsmeyer–Peppas model and followed Fickian diffusion mechanism. In vivo data showed that the administration of ACE in polymeric microspheres prevented the gastric side effects. Conclusion: The formulations here described can be proposed for the oral administration of nonsteroidal anti-inflammatory drugs with minimal side effects on gastric mucosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号