首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The aim of this study was to develop La1−xBaxGa1−yMgyO3−δ (x = 0.03–0.1, y = 0.2–0.25) (LBGM) electrolytes for intermediate-temperature solid-oxide fuel cells (SOFCs); these electrolytes were synthesized via a solid-state reaction. In the study, the La1−xBaxGa1−yMgyO3−δ samples crystallized in an orthorhombic (Imma) structure, and a BaLaGa3O7 phase was detected for x ≥ 0.08 at a fixed y = 0.2. The solubility limit of the Ba ions increased with an increase in the Mg content in the matrix. Two active Raman bands at ca. 677 and 739 cm−1 were observed, and they were attributed to the oxygen vacancies. The La0.95Ba0.05Ga0.75Mg0.25O3−δ sample had a higher conductivity ca. 0.1 S/cm at 800 °C, and an activation energy of ca. 0.83–1.27 eV at 500–800 °C. The thermal expansion coefficient (TEC) of the LBGM samples at 200–800 °C was in the range of 10 × 10−6 to 14 × 10−6/°C.  相似文献   

2.
A-site cation-deficient Ba1−xCo0.7Fe0.2Nb0.1O3−δ (B1−xCFN, x = 0.00-0.15) oxides are synthesized and evaluated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). The reactivity between B1−xCFN and gadolinia doped ceria (GDC) is observed at different temperature, and no second phase is detected under 1050 °C. The increasing in A-site cation deficiency results in a steady decrease in cathode polarization resistance. Among the various B1−xCFN oxides test, GDC based anode supported cells with B0.9CFN cathode possess the smallest interfacial polarization resistance (Rp). The Rp is as low as 0.283 and 0.046 Ω cm2 at 500 and 600 °C, respectively. The anode supported cell with B0.9CFN provides maximum power densities of 1062 and 1139 mW cm−2 at 600 and 650 °C, respectively. The results suggest that B0.9CFN is a great potential cathode material for IT-SOFCs.  相似文献   

3.
Oxides of La0.8Sr0.2Mn1−xRuxO3−δ (LSMR) (x = 0, 0.25, 0.50, 0.75, or 1.0) were prepared to fabricate cathodes in solid oxide fuel cells. The crystal structure changed from trigonal (x = 0 or 0.25) to a mixture of trigonal and orthorhombic (x = 0.5) and to orthorhombic (x = 0.75 or 1.0). X-ray photoelectron spectroscopy analysis after electrochemical testing indicated that the relative concentrations of Ru4+ to Ru6+ and Mn4+ to Mn2+ influence the performance of a single cell. The transformation from Ru4+ to Ru6+ releases two electrons but that from Mn4+ to Mn2+ creates two electron holes (an oxygen vacancy). The relative concentrations in LSMR were determined using the stoichiometric ratio (x) of Ru, and then, the concentrations of electrons and electron holes for influencing the cathode electrochemical catalytic reactivity were estimated. x = 0.25 represented the better cell performance, and Ru may stabilize the LSMR grain size during electrochemical testing.  相似文献   

4.
(Pr–Nd)1−ySryMnO3−δ (P-NSM, y = 0.2, 0.25, 0.3, 0.35) powders made from commercial Pr–Nd mixed oxide, as well as (Pr1−xNdx)0.7Sr0.3MnO3−δ (PN3SM, x = 0, 0.5, 0.7, 1) were synthesized by a glycine-nitrate process and characterized as cathode materials for intermediate temperature solid oxide fuel cell (IT-SOFC). XRD patterns showed the powders had formed pure perovskite phase after being calcined at 800 °C for 2 h. (Pr–Nd)0.7Sr0.3MnO3−δ (P-N3SM) achieved a high conductivity of 194 S cm−1 at 500 °C and showed a good chemical stability against YSZ at 1150 °C. And the thermal expansion coefficient of P-N3SM/YSZ cathode was 11.1 × 10−6 K−1, which well matched YSZ electrolyte film. The tubular SOFC with P-N3SM/YSZ cathode exhibited the maximum power densities of 415, 367, 327 and 282 mW cm−2 at 850, 800, 750 and 700 °C, respectively, which indicated P-N3SM was potentially applied in SOFC for low cost.  相似文献   

5.
The SrTixCo1−xO3−δ (STC, x = 0.05, 0.1, 0.15, 0.2) perovskite-type oxides synthesized by the polymerized complex (PC) method have been investigated as cathode materials for low-temperature solid oxide fuel cells (SOFCs) with composite electrolyte for the first time. Thermogravimetry-differential thermal analysis (TG-DTA) shows the crystallization of SrTi0.1Co0.9O3−δ occurs at 780 °C. The oxides have been stabilized to be a cubic perovskite phase after the B-site is doped with Ti ion. The maximum power density reaches as high as 613 mW cm−2 at 600 °C for SOFC with SrTi0.2Co0.8O3−δ cathode. The maximum power densities increase with the increasing Ti content in the cathode, which can be attributed to the enhancement of conductivity and electrocatalytic activity. The stability of the fuel cell with SrTi0.1Co0.9O3−δ cathode has been examined for 18 h at 600 °C. Only a slight decline in the cell performance can be observed with increasing time. The high performance cathodes together with the low-cost fabrication technology are highly encouraging for development of low-temperature SOFCs.  相似文献   

6.
Yttria-doped strontium titanium oxide (Sr0.92Y0.08TiO3−δ; SYT) was investigated as an alternative anode material for solid oxide fuel cells (SOFCs). The SYT synthesized by the Pechini method exhibits excellent phase stability during the cell fabrication processes and SOFC operation and good electrical conductivity (about 0.85 S/cm, porosity 30%) in reducing atmosphere. The performance of SYT anode is characterized by slow electrochemical reactions except for the gas-phase diffusion reactions. The cell performance with the SYT anode running on methane fuel was improved about 5 times by SDC film coating, which increased the number of reaction sites and also accelerated electrochemical reaction kinetics of the anode. In addition, the SDC-coated SYT anode cell was stably operated for 900 h with methane. These results show that the SDC-coated SYT anode can be a promising anode material for high temperature SOFCs running directly on hydrocarbon fuels.  相似文献   

7.
Double-perovskite Sr2−xSmxMgMoO6−δ (SSMM, 0 ≤ x ≤ 0.8) is investigated as a possible anode material for solid-oxide fuel cells on La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) electrolytes. Single-phase SSMM samples with 0 ≤ x ≤ 0.4 are prepared. At x ≥ 0.6, a small amount of SrMoO4 and Sm2O3 impurities are observed. The Mg/Mo ordering in SSMM decreases with increasing Sm content. Substitution of Sm for Sr significantly improves the electrical conductivity of SSMM. At x = 0.6, the sample yields the highest conductivity, with values reaching 16 S cm−1 in H2 at 800 °C. The maximum power densities of single cells achieved with x = 0.0, 0.2, 0.4, 0.6, and 0.8 anodes on a 300 μm-thick LSGM electrolyte are 693, 770, 860, 907, and 672 mW cm−2, respectively, in H2 at 850 °C. The SSMM sample with x = 0.4 is considered as the best anode candidate because of the impurity formation seen in x ≥ 0.6 samples. The x = 0.4 sample not only has a thermal-expansion coefficient closer to that of the LSGM electrolyte but also exhibits good electrochemical performance and stability in commercial city gas containing H2S, where the maximum power density achieved is 726 mW cm−2 at 850 °C.  相似文献   

8.
The structure, phase stability, and electrical properties of BaCe1−xYxO3−δ (x = 0-0.4) in humidity air and CO2 atmosphere are investigated. XRD results indicate that the BaCe0.9Y0.1O3−δ sample has a symmetric cubic structure, and its phase changes to tetragonal as the Y3+ doping amount increases to 20 mol%. The conductivity of BaCe1−xYxO3−δ increases with temperature, and it depends on the amount of yttrium doping and the atmosphere. BaCe0.8Y0.2O3−δ exhibits the highest conductivity of 0.026 S cm−1 at 750 °C. The activation energy for conductivity depends on yttrium doping amount and temperature. The conductivity of BaCe0.8Y0.2O3−δ is 0.025 S cm−1 in CO2 atmosphere at 750 °C which is 3.8% lower than that in air due to reactions with CO2 and BaCO3 and the CeO2 impure phases formed. The structure of BaCe0.8Y0.2O3−δ is unstable in water and decomposes to Ba(OH)2 and CeO2 phases. It is found that the activation energy of samples in CO2 atmosphere is higher than that of sample in air. Sr-doped Ba1−ySryCe0.8Y0.2O3−δ (y = 0-0.2) is prepared to improve the phase stability of BaCe0.8Y0.2O3−δ in water. The conductivity of Ba0.9Sr0.1Ce0.8Y0.2O3−δ is 0.023 S cm−1 at 750 °C which was 11% lower than that of BaCe0.8Y0.2O3−δ, however, the phase stability of Ba0.9Sr0.1Ce0.8Y0.2O3−δ is much better than that of BaCe0.8Y0.2O3−δ in water.  相似文献   

9.
LaCrO3 doped with calcium and cerium on the A-site in the series of La0.9−xCaxCe0.1CrO3−δ (LCCC3060, LCCC4050, LCCC5040, LCCC6030 corresponding to x = 0.6, 0.5, 0.4, and 0.3 respectively), is synthesized by a sol–gel combustion method and evaluated as anode material for solid oxide fuel cells (SOFCs). Relatively higher Ca-doping on La in LaCrO3 is found to improve both electronic and ionic conductivity. LCCC compositions have demonstrated good chemical stability in reducing atmospheres. Evaluation of the LCCC material as anode in symmetrical cell configuration shows that the highest Ca-doping composition results in the lowest activation energy and the lowest polarization resistance. La0.8Sr0.2Ga0.83Mg0.17O3−δ (LSGM) electrolyte-supported single cells with LCCC3060 as the anode and La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) as the cathode show that LCCC3060 can be a potential anode material for H2, but not for CH4.  相似文献   

10.
BaZr0.9−xPrxGd0.1O3−δ (x = 0.3 and 0.6) was prepared by combustion synthesis and characterised with respect to conductivity and stability in an attempt to combine the desirable properties of the end members. The polycrystalline materials exhibit a cubic or pseudo-cubic structure as determined by X-ray synchrotron radiation and transmission electron microscopy. The chemical stability of the compositions is strongly dependent on the praseodymium content, the materials with more Pr present lower stability. Electron holes dominate the conductivity under oxidising atmospheres in BaZr0.3Pr0.6Gd0.1O3−δ, while BaZr0.6Pr0.3Gd0.1O3−δ exhibits a mixed electron hole-proton conducting behaviour. Substitution of Zr by Pr in acceptor-doped BaZrO3 decreases the sintering temperature and increases the grain growth rate.  相似文献   

11.
Perovskite oxide Ba1.0Co0.7Fe0.2Nb0.1O3−δ has been reported as oxygen transport membrane and cathode material for solid oxide fuel cells (SOFCs). In this study, the effects of A-site cation deficiency and B-site iron doping concentration on the crystal structure, thermal expansion coefficient (TEC), electrical conductivity and electrochemical performance of Ba1−xCo0.9−yFeyNb0.1O3−δ (x = 0-0.15, y = 0-0.9) have been systematically evaluated. Ba1−xCo0.9−yFeyNb0.1O3−δ (x = 0-0.10, y = 0.2 and x = 0.10, y = 0.2-0.6) can be indexed to a cubic structure. Increased electrical conductivity and decreased cathode polarization resistance have been achieved by A-site deficiency. No obvious variation can be observed in TEC by A-site deficiency. The electrical conductivity and TEC of Ba0.9Co0.9−yFeyNb0.1O3−δ decrease while the cathode polarization resistance increases with the increase in iron doping concentration. The highest conductivity of 13.9 S cm−1 and the lowest cathode polarization resistance of 0.07 Ω cm2 have been achieved at 700 °C for Ba0.9Co0.7Fe0.2Nb0.1O3−δ. The composition Ba0.9Co0.3Fe0.6Nb0.1O3−δ shows the lowest TEC value of 13.2 × 10−6 °C−1 at 600 °C and can be a potential cathode material for SOFCs.  相似文献   

12.
A cost and time effective process was used to prepare the solid solutions BaCexZr(0.9−x)Y0.1O(3−δ) (0 ≤ x ≤ 0.4). 98% dense samples were obtained by solid state reactive sintering at 1500 °C for 4 h, with the addition of 1 wt% of NiO to the quantity of synthesized/sintered compound. Scanning electron micrographs reveal polygonal grains of 1–5 microns, whose size increases from the compound with no cerium (BCZY09) to the samples containing cerium (BCZY18–BCZY45). The conductivity, measured in wet reducing atmosphere (9% H2 in N2, p(H2O) = 0.015 atm) by impedance spectroscopy, increases with the cerium content. Some samples have also been prepared using barium sulfate (BaSO4) as barium precursor (instead of barium carbonate BaCO3) due to its non toxicity. The corresponding samples (prepared at 1575 °C) showed similar properties as the ones prepared with barium carbonate. Furthermore, different geometries (rods, tubes, pellets) could be made.  相似文献   

13.
The (100 − x)Nd1.8Sr0.2NiO4−δ:(x)Ce0.9Gd0.1O2−δ (x = 00, 10, 20, 30, 40 and 50 vol%) composites are obtained by ball milling requisite mixture at 200 rotations per minute for 2 h under acetone followed by sintering at 1000 °C for 4 h. The increase in concentration of Ce0.9Gd0.1O2−δ in composite reduces the crystallite size of host Nd1.8Sr0.2NiO4−δ from 378 ± 0.7 to 210 ± 0.8 nm. The dc (electronic) conductivity of composite decreases moderately with an increase in Ce0.9Gd0.1O2−δ content in composite up to 30 vol%, and it decreases abruptly, thereafter at x > 30. A minimum polarization resistance value of 0.24 Ω cm2 (at 700 °C) is obtained for a (70)Nd1.8Sr0.2NiO4−δ:(30)Ce0.9Gd0.1O2−δ composite cathode, and this value is attributed to the optimal dispersion of Ce0.9Gd0.1O2−δ into Nd1.8Sr0.2CuO4−δ matrix. The oxygen partial pressure dependent polarization resistance study suggests that the charge transfer and the non-charge transfer oxygen adsorption–desorption along with diffusion are the major rate limiting steps of overall oxygen reduction reaction process.  相似文献   

14.
A Sm0.5Sr0.5CoO3−δ-Ce0.8Sm0.2O2−δ (SSC-SDC) composite is employed as a cathode for proton-conducting solid oxide fuel cells (H-SOFCs). BaZr0.1Ce0.7Y0.2O3−δ (BZCY) is used as the electrolyte, and the system exhibits a relatively high performance. An extremely low electrode polarization resistance of 0.066 Ω cm2 is achieved at 700 °C. The maximum power densities are: 665, 504, 344, 214, and 118 mW cm−2 at 700, 650, 600, 550, and 500 °C, respectively. Moreover, the SSC-SDC cathode shows an essentially stable performance for 25 h at 600 °C with a constant output voltage of 0.5 V. This excellent performance implies that SSC-SDC, which is a typical cathode material for SOFCs based on oxide ionic conductor, is also a promising alternative cathode for H-SOFCs.  相似文献   

15.
Oxides of composition SrMo1−xCrxO3−δ (x = 0.1, 0.2) have been prepared, characterized and tested as anode materials in single solid-oxide fuel cells, yielding output powers higher than 700 mW cm−2 at 850 °C with pure H2 as a fuel. All the materials are suggested to present mixed ionic–electronic conductivity (MIEC) from neutron powder diffraction (NPD) experiments, complemented with transport measurements; the presence of a Mo4+/Mo5+ mixed valence at room temperature, combined with a huge metal-like electronic conductivity, as high as 340 S cm−1 at T = 50 °C for x = 0.1, could make these oxides good materials for solid-oxide fuel cells. The magnitude of the electronic conductivity decreases with increasing Cr-doping content. The reversibility of the reduction–oxidation between the oxidized Sr(Mo,Cr)O4−δ scheelite and the reduced Sr(Mo,Cr)O3 perovskite phases was studied by thermogravimetric analysis, which exhibit the required cyclability for fuel cells. An adequate thermal expansion coefficient, without abrupt changes, and a chemical compatibility with electrolytes make these oxides good candidates for anodes in intermediate-temperature SOFC (IT-SOFCs).  相似文献   

16.
Perovskite oxides SrCo1−yNbyO3−δ (SCNy, y = 0.00-0.20) are investigated as potential cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs) on La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) electrolyte. Compared to the undoped SrCoO3−δ, the Nb doping significantly improves the thermal stability and enhances the electrical conductivity of the SCNy oxides. The cubic phase of the SCNy oxides with high thermal stability can be totally obtained when the Nb doping content y ≥ 0.10. Among the investigated compositions, the SrCo0.9Nb0.1O3−δ oxide exhibits the highest electrical conductivity of 461-145 S cm−1 over the temperature range of 300-800 °C in air. The SCNy cathode has a good chemical compatibility with the LSGM electrolyte for temperatures up to 1050 °C for 5 h. The area specific resistances of SCNy with y = 0.10, 0.15 and 0.20 cathodes on LSGM electrolyte are 0.083, 0.099 and 0.110 Ω cm2 at 700 °C, respectively. At y = 0.10, 0.15 and 0.20, the maximum power densities of a single-cell with SCNy cathodes on 300-μm thick LSGM electrolyte achieve 675, 642 and 625 mW cm−2 at 800 °C, respectively. These results indicate that SCNy perovskite oxides with cubic phase are potential cathode materials for application in IT-SOFCs.  相似文献   

17.
Composite anodes consisting of Pd-substituted (La,Sr)CrO3−δ mixed with 50 wt% Ce0.9Gd0.1O2−δ were tested in La0.9Sr0.1Ga0.8Mg0.2O3−δ-electrolyte supported fuel cells at 800 °C with humidified H2 fuel. Low anode polarization resistance was observed during the first several hours of operation, explained by the nucleation of Pd nano-particles on perovskite particle surfaces. Anode performance then degraded gradually before stabilizing. Redox cycling repeatedly restored the anodes to their initial peak performance, followed again by degradation. This regenerative behavior was explained by the observation that the Pd nano-particles were removed by oxidation, and then re-nucleated upon reduction.  相似文献   

18.
Perovskite-type La1−xSrxNiyFe1−yO3−δ (x = 0.3, 0.4, 0.5, 0.6, y = 0.2; x = 0.3, y = 0.2, 0.3, 0.4) oxides have been synthesized and employed as cathodes for low-temperature solid oxide fuel cells (SOFCs) with composite electrolyte. The segregation of La2NiOδ is observed to increase with the increasing Sr2+ incorporation content according to X-ray diffraction (XRD) results. The as-prepared powders appear porous foam-like agglomeration with particle size less than 1 μm. Maximum power densities yield as high as 725 mW cm−2 and 671 mW cm−2 at 600 °C for fuel cells with the LSNF4628 and LSNF7337 composite cathodes. The maximum power densities continuously increase with the increasing Sr2+ content in LSNF cathodes, which can be mainly ascribed to the possible charge compensating mechanism. The maximum power densities first increase with the Ni ion incorporation content up to y = 0.3 due to the increased oxygen vacancy, ionic conductivity and oxygen permeability. Further increase in Ni ion content results in a further lowering of fuel cell performance, which can be explained by the association of oxygen vacancies and divalent B-site cations in the cathode.  相似文献   

19.
A cobalt-free Sm0.5Sr0.5FeO3−δ–BaZr0.1Ce0.7Y0.2O3−δ (SSF–BZCY) was developed as a composite cathode material for proton-conducting solid oxide fuel cells (H-SOFC) based on proton-conducting electrolyte of stable BZCY. The button cells of Ni-BZCY/BZCY/SSF–BZCY were fabricated and tested from 550 to 700 °C with humidified H2 (~3% H2O) as a fuel and ambient oxygen as oxidant. An open-circuit potential of 1.024 V, maximum power density of 341 mW cm−2, and a low electrode polarization resistance of 0.1 Ω cm2 were achieved at 700 °C. The experimental results indicated that the SSF–BZCY composite cathode is a good candidate for cathode material.  相似文献   

20.
Scandium-doped lanthanum strontium manganate La0.8Sr0.2Mn1−xScxO3−δ (LSMS) combined with YSZ as composite cathode for anode-supported solid oxide fuel cell is investigated. The LSMS powders are prepared using the modified Pechini method. The XRD and H2-TPR results reveal that non-stoichiometric defects are introduced into the perovskite lattice of LSMS samples as a result of Sc substitution, which leads to increased oxygen ion mobility in the Sc containing samples. But high level doping of Sc may results in the segregation of the Sc2O3 secondary phase at elevated temperature. The cells with the LSMS-containing cathodes exhibit higher performances, especially at lower temperatures, which can be ascribed to the increased oxygen anionic vacancies in the LSMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号