首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
While the energy supply of most islands depends mainly on expensive oil derivatives’ importation, the others are linked by usually a weak electricity grid connection to the mainland. Due to high energy costs the islands are proving to be excellent test beds for the introduction of new technologies, and some islands are trying to become so-called renewable islands, to satisfy their energy demand mainly or entirely from indigenous and renewable sources, thus increasing the security of supply, and employment opportunities, without necessarily increasing the costs. Islands that have energy sources, such as hydro or geothermal energy, can easily integrate them into the power system, but those with mainly intermittent renewable energy sources are confronted with the necessity of energy storage. The most promising technologies are reversible hydro where geography allows, and storing hydrogen where it does not. The stored hydrogen can later be used for electricity production, and also for transport. This paper describes the H2RES model for optimisation of integration of hydrogen usage with intermittent renewable energy sources on the example of an isolated island in the Madeira archipelago, Porto Santo. It shows that it is possible to significantly increase the penetration of renewable energy sources, albeit at a relatively high cost, with hydrogen storage technology. The H2RES model, which includes reversible hydro and batteries as storage technologies, can serve as a valuable tool for island energy planning.  相似文献   

2.
When it comes to the energy planning, computer programs like H2RES are becoming valuable tools. H2RES has been designed as support for simulation of different scenarios devised by RenewIsland methodology with specific purpose to increase integration of renewable sources and hydrogen into island energy systems. The model can use wind, solar, hydro, biomass, geothermal as renewable energy sources and fossil fuel blocks and grid connection with mainland as back up. The load in the model can be represented by hourly and deferrable electricity loads of the power system, by hourly heat load, by hydrogen load for transport and by water load depending on water consumption. The H2RES model also has ability to integrate different storages into island energy system in order to increase the penetration of intermittent renewable energy sources or to achieve a 100% renewable island. Energy storages could vary from hydrogen loop (fuel cell, electrolyser and hydrogen storage) to reversible hydro or batteries for smaller energy systems. The H2RES model was tested on the power system of the Island of Porto Santo – Madeira, the islands of Corvo, Graciosa, and Terrciera – Azores, Sal Island – Cape Verde, Portugal, the Island of Mljet, Croatia and on the energy system of the Malta. Beside energy planning of the islands, H2RES model could be successfully applied for simulation of other energy systems like villages in mountain regions or for simulation of different individual energy producers or consumers.  相似文献   

3.
In this article different scenarios are analysed with the objective of increasing the penetration of renewable energies in the energy system of S. Vicente Island in Cape Verde. An integrated approach is used to analyse the electricity and water supply systems. The H2RES model, a tool designed to simulate the integration of renewable sources and hydrogen in the energy systems of islands or other isolated locations, is applied.  相似文献   

4.
The islands usually face challenges in their energy supply due to their specific location. On islands that are distant from the land, power is typically provided by diesel generators. Therefore, oil tankers must regularly refuel the island in order to supply the necessary fuel for diesel generators. As a result, if the fueling procedure is not completed for whatever reason, the island will not receive the necessary energy, which will result in an unavoidable loss of load. Due to their strategic location, some of these islands are used as military islands to protect the nations and waterways. Given the vital role that these military islands play for nations, a delay in supplying the island with energy can seriously harm security, the economy, and other factors. Transferring fuel to these islands is typically difficult, and in some cases impossible, under certain circumstances, such as war. Therefore, reducing the island's reliance on fossil fuels as much as feasible is vital to ensure the energy security of these specific islands. Diesel generators provide electricity to Larak Island, which is situated in the Strait of Hormuz. Larak Island serves as a military island due to its geopolitical location, hence it is crucial to consistently provide Larak with electricity. Therefore, in this paper, a combination of distributed generations and system storage is used to supply the Larak island. The photovoltaic, wind and tidal plants are considered the main power plants, and fuel cells with electrolyzers and hydrogen tanks have also been used as storage systems. In addition, the diesel generator is considered the system backup. The considered objective functions to design and manage Larak island's power supply system are reducing diesel generators fuel consumption, reducing electricity cost, and reducing electricity outages and lost power generation of renewable resources.  相似文献   

5.
Present trends of electrical energy supply and demand are not sustainable because of the huge gap between demand and supply in foreseeable future in India. The path towards sustainability is exploitation of energy conservation and aggressive use of renewable energy systems. Potential of renewable energy technologies that can be effectively harnessed would depend on future technology developments and breakthrough in cost reduction. This requires adequate policy guidelines and interventions in the Indian power sector. Detailed MARKAL simulations, for power sector in India, show that full exploitation of energy conservation potential and an aggressive implementation of renewable energy technologies lead to sustainable development. Coal and other fossil fuel (gas and oil) allocations stagnated after the year 2015 and remain constant up to 2040. After the year 2040, the requirement for coal and gas goes down and carbon emissions decrease steeply. By the year 2045, 25% electrical energy can be supplied by renewable energy and the CO2 emissions can be reduced by 72% as compared to the base case scenario.  相似文献   

6.
This paper presents a comparative study of two energy system analysis models both designed for the purpose of analysing electricity systems with a substantial share of fluctuating renewable energy. The first model (EnergyPLAN) has been designed for national and regional analyses. It has been used in the design of strategies for integration of wind power and other fluctuating renewable energy sources into the future energy supply. The model has been used for investigating new operation strategies and investments in flexibility in order to utilize wind power and avoid excess production. The other model (H2RES) has been designed for simulating the integration of renewable sources and hydrogen into island energy systems. The H2RES model can use wind, solar and hydro as renewable energy sources and diesel blocks as backup. The latest version of the H2RES model has an integrated grid connection with the mainland. The H2RES model was tested on the power system of Porto Santo Island, Madeira, Portugal, Corvo and Graciosa Islands, Azores Islands, Portugal and Sal Island, Cape Verde. This paper presents the results of using the two different models on the same case, the island of Mljet, Croatia. The paper compares methodologies and results with the purpose of identifying mutual benefits and improvements of both models.  相似文献   

7.
Thailand is one of the fastest growing energy-intensive economies in Southeast Asia. To formulate sound energy policies in the country, it is important to understand the impact of energy use on the environment over the long-period. This study examines energy system development and its associated greenhouse gas and local air pollutant emissions under four scenarios in Thailand through the year 2050. The four scenarios involve different growth paths for economy, population, energy efficiency and penetration of renewable energy technologies. The paper assesses the changes in primary energy supply mix, sector-wise final energy demand, energy import dependency and CO2, SO2 and NOx emissions under four scenarios using end-use based Asia-Pacific Integrated Assessment Model (AIM/Enduse) of Thailand.  相似文献   

8.
In isolated islands, usually diesel generators supply electric power. However, there are problems, e.g., a lack of fossil fuel, environmental pollution etc. So, isolated island, e.g. Miyako island, installs renewable energy power production plants. However, renewable energy power production plants are very costly. This paper presents an optimal configuration of power system in isolated island installing renewable energy power production plants. The generating system consists of diesel generators, wind turbine generators, PV system and batteries. Using the proposed method, operation cost can be reduced about 10% in comparison with diesel generators only from simulation results.  相似文献   

9.
Globally, small islands below 100,000 inhabitants represent a large number of diesel based mini-grids. With volatile fossil fuel costs which are most likely to increase in the long-run and competitive renewable energy technologies the introduction of such sustainable power generation system seems a viable and environmental friendly option. Nevertheless the implementation of renewable energies on small islands is quite low based on high transaction costs and missing knowledge according to the market potential.Our work provides a global overview on the small island landscape showing the respective population, economic activity, energy demand, and fuel costs for almost 1800 islands with approximately 20 million inhabitants currently supplied by 15 GW of diesel plants. Based on these parameters a detailed techno-economic assessment of the potential integration of solar PV, wind power, and battery storage into the power supply system was performed for each island. The focus on solar and wind was set due to the lack of data on hydro and geothermal potential for a global island study. It revealed that almost 7.5 GW of photovoltaic and 14 GW of wind power could be economically installed and operated on these islands reducing the GHG-emissions and fuel consumption by approximately 50%. In total numbers more than 20 million tons of GHG emissions can be reduced by avoiding the burning of 7.8 billion liters of diesel per year. Cost savings of around 9 USDct/kWh occur on average by implementing these capacities combined with 5.8 GWh of battery storage. This detailed techno-economic evaluation of renewable energies enables policy makers and investors to facilitate the implementation of clean energy supply systems on small islands. To accelerate the implementation of this enormous potential we give specific policy recommendations such as the introduction of proper regulations.  相似文献   

10.
11.
Sources of renewable energies (for example landfill gas, wind, solar energy) are environmentally friendly and electric power generation in South Korea has concentrated on new and renewable energy technologies. The purpose of this paper is to study the economic and environmental influence of renewable energies on existing electricity generation market of South Korea with energy-economic model called ‘Long-range Energy Alternative Planning system’ and the associated ‘Technology and Environmental Database’. Business as usual scenario was based on energy supply planning with existing power plant. And then, the alternative scenarios were considered, namely the base case with existing electricity facilities, the installation plan of different renewable energy facilities, technological improvement and process dispatch rule according to merit order change. In each alternative scenario analysis, alternation trend of existing electricity generation facilities is analyzed and the cost of installed renewable energy plants and CO2 reduction potential was assessed quantitatively.  相似文献   

12.
During the last 50 years, Kinmen's economy has gone from military-based to increasingly tourism-based, Kinmen has been putting various constructions into action, and hence, the demand for electricity supply is getting higher relatively while the province is pushing various constructions. Nowadays, Kinmen County Government has made directions for future developments already and kept on promoting the sustainable development of Kinmen Island in order to make it a suitable place for living. According to the development blueprint, the future resident population will increase to around 150  200 thousand people so the relative electricity consumption in Kinmen Island will cause serious problems for Taipower in addition to large scale environmental pollution. The present study researches on both the limitation and independence of this particular island and presumes the electricity power supply will be provided through renewable energy sources, such as solar energy, wind energy, and tidal power generation and so on, whereby it will achieve the target of energy saving and carbon reduction successfully soon. Upon the construction process of the renewable energy sources, this study will simultaneously assess the eco-environment and social conditions on the island to evaluate the feasibility of existing renewable energy technologies which are more mature and determine the optimum renewable energy system that shall be constructed in the Kinmen region in the near future, in order to replace traditional energy sources. Meanwhile, it will assist the related energy industries to create an ultra-clean environment in Kinmen with self-developing power and enhance international competition forces so as to establish a positive international image of environmental protection by achieving a habitat with energy self-sufficiency, and ultimately the empirical model can be duplicated and promoted to other islands.  相似文献   

13.
Electricity generation costs are typically higher on islands than in mainland regions, primarily due to the costs associated with conventional primary energy transportation. However, at the same time, islands are commonly granted with significant renewable energy potential in terms of wind, solar radiation and marine energy, among others, varying by case.This article is focused on the impact that the grid regulatory framework has had on several islands from both the technical and economical points of view, with respect to renewable energy development. A comparison among the studied islands is carried out. Additionally, the possible differences between each island (or archipelago) and the rest of the corresponding country on the mainland are analysed to determine to what extent the peculiarities of the islands have been taken into account in the regulations.Our objective is to analyse whether the renewable energy developments on certain islands have taken place because of certain favourable scenarios or by promoting specific actuations, which could be applicable on other islands to promote similar developments. As a result of the study, strategic key ideas are identified to increase the renewable energy percentage of the electricity generation and energy consumption mix on islands.  相似文献   

14.
Increase of the global energy demand and environmental problems relating to fossil energy utilization request the new energy sources to replace the traditional fossil fuels. With respect to energy production, most of the islands in European Union and in the other parts of the world, depend on importation, mainly from oil and its related products. The global development of renewable energy technologies can assure sustainable supply of power for islands. To overcome the limitation of the sources of renewable energy, hydrogen is utilized as a storage medium integrated with intermittent renewable energy sources such as wind and solar. This paper introduces the programme of “Renewislands—Renewable Energy Solutions for Islands”, the work tasks, details of the design of the activities to develop solutions integrating intermittent renewable energy supply (RES), fuel cell (FC) and hydrogen infrastructure to promote RES and innovative decentralized power systems penetration in islands; main results achieved in each work packages are presented; in addition, the development of intermittent renewable energy penetration in specific European Islands are reviewed briefly.  相似文献   

15.
Australia, a major producer and user of coal, has the highest per capita greenhouse gas emissions in the industrialised world. This study investigates whether in theory such a ‘fossil-fuel dependent’ country could achieve a 50% reduction in CO2 emissions from stationary energy by 2040, compared with its 2001 emissions. To do this scenarios are developed, using a combination of forecasting and backcasting methods, under conditions of continuing economic growth and a restriction to the use of existing commercial technologies with small improvements. The principal scenario achieves the above target by implementing on the demand-side a medium-level of efficient energy use and substantial solar hot water together with a supply side combination of mainly natural gas, bioenergy and wind power. In doing so the scenario also achieves a 78% reduction in CO2 emissions from electricity. Within the large uncertainties in future prices, it is possible that the economic savings from efficient energy use could pay for all or a large part of the additional costs of renewable energy.  相似文献   

16.
Energy supply in Brazil relies heavily on renewable energy source. The production of energy from renewable sources, however, greatly depends on climatic conditions, which may be impacted in the future due to global climate change (GCC). This paper analyzes the vulnerabilities of renewable energy production in Brazil for the cases of hydropower generation and liquid biofuels production, given a set of long-term climate projections for the A2 and B2 IPCC emission scenarios. The most important result found in this study is the increasing energy vulnerability of the poorest regions of Brazil to GCC. Both biofuels production (particularly biodiesel) and electricity generation (particularly hydropower) may negatively suffer from changes in the climate of those regions. Other renewable energy sources—such as wind power generation—may also be vulnerable, raising the need for further research. However, the results found are fundamentally dependent on the climate projections which, in turn, are still highly uncertain with respect to the future evolution of greenhouse gas emissions, greenhouse gas concentrations in the atmosphere and GCC. Therefore, in such long-term scenario analyses, the trends and directions derived are the ones to be emphasized rather than the precise results one arrives.  相似文献   

17.
Modeling biomass as a renewable energy source poses many challenges with respect to feedstock variability, which are difficult to account for. It is found that at the preliminary stages of energy planning, heating value and moisture content of the feedstock are the most important factors. In addition, the effects of harvesting, transportation and storage are found to be significant even though they are often overlooked. Using the gathered information a biomass module for energy planning is created and integrated to H2RES, a renewable energy planning program. Using this excel based software, a case study for a wood processing factory is performed, using the waste wood as feedstock. Comparing various scenarios, it is concluded that using a combination of solid oxide fuel cells, solar panels and steam turbines can satisfy the factories energy requirements with excess sold to the grid.  相似文献   

18.
A target-oriented scenario of future energy demand and supply is developed in a backcasting process. The main target is to reduce global CO2 emissions to around 10 Gt/a in 2050, thus limiting global average temperature increase to 2 °C and preventing dangerous anthropogenic interference with the climate system. A 10-region energy system model is used for simulating global energy supply strategies. A review of sector and region-specific energy efficiency measures resulted in the specification of a global energy demand scenario incorporating strong energy efficiency measures. The corresponding supply scenario has been developed in an iterative process in close cooperation with stakeholders and regional counterparts from academia, NGOs and the renewable energy industry. The 2 °C scenario shows that renewable energy could provide as much as half of the world's energy needs by 2050. Developing countries can virtually stabilise their CO2 emissions, while at the same time increasing energy consumption through economic growth. OECD countries will be able to reduce their emissions by up to 80%.  相似文献   

19.
This paper studies economics of renewable energy systems with consideration of future prospects on costs and uncertain external conditions that may affect competitiveness in the power plant market. The concept of learning curve is adopted to compute estimates on the costs of installing and operating renewable energy systems in the future; fuel costs and carbon price are modeled as scenario-dependent variables to analyze their impact on total costs under different scenarios. The proposed approach allows evaluation and comparison of total costs necessary in implementing renewable energy plans under varying technological, and/or economical conditions that face uncertainty at present. Moreover, analyzing the evaluation results further with techniques like sensitivity analysis can identify factors central to reducing the total costs. As an illustrative case-study, the Korean government’s renewable energy plan has been evaluated accordingly, under three different scenarios defined by International Energy Agency (IEA). The evaluation results indicate minor changes in total costs of achieving the plan among three scenarios, mainly due to counterbalancing between the price of fossil fuels and carbon price. Further analyses revealed factors central to lowering the total costs necessary in implementing the plan—hybridization between renewable energy systems, reduction of biomass production costs via technological innovation, increasing learning rates by focusing on R&D and international cooperation.  相似文献   

20.
This work analyzes different modeling methodologies for balancing the electricity supply sources and the electricity demand in systems with high penetration of intermittent renewable energy sources, such as wind and run-of-river hydro. This work also explores the reasons and the circumstances where common balance approaches used by mid- and long-term energy models show significant differences in dispatched renewable sources, overestimating the renewable share in the electricity mix and underestimating the amount of CO2 emitted by the electric system, when compared to balance methods with high time resolution. These reasons and circumstances are illustrated for the Flores island (Azores) case study which has already achieved a share of 50% of renewable energies in electricity production in 2009.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号