首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subject of heat transfer enhancement has significant interest to develop the compact heat exchangers in order to obtain a high efficiency, low cost, light weight, and size as small as possible. Therefore, energy cost and environmental considerations are going on to encourage attempts to invent better performance over the existence designs. Streamwise vortices can be generated using small flow manipulators or protrusions such as wings and winglets configurations. Single-pair, single row, or two dimensional array of vortex generators (VGs) can be punched, mounted, attached or embedded in the boundary layer of flow channel. VGs generate longitudinal and transverse vortices, while longitudinal vortices are more efficient for heat transfer enhancement than transverse vortices. A dramatic augmentation in thermal performance of the thermal system can be achieved but pressure drop penalty is existed. Several parameters have been overviewed in this paper, which have pronounced effect on the convective heat transfer coefficient and pressure drop penalty. These parameters are: attack angle of VG, geometry of VG, standard and novel types of VG, spacing between the VG tips, number of pairs of VGs in the flow direction, rectangular or circular array arrangement of VGs, common-flow upper (CFU) or common-flow down (CFD) configuration of VG, pointing up (PU) or pointing down (PD) arrangement of VG with flow direction, Re number, channel aspect ratio, number of tubes of fin-tube heat exchanges (HE), circular or oval tubes of fin-tube HE, and location of VG respect to the tube of HE or from leading edge of the channel. This paper gives an overview about the early studies done in order to improve the performance of thermal systems with minimal pressure losses to derive systems with less negative impact on the environment and high level of energy economic. This study also provides an outlook for future work using nanofluids with vortex generators.This article is also summarizes the recent experimental and numerical developments on the thermal conductivity measurements of nanofluids, thermal conductivity enhancement, convection and conduction heat transfer, some applications, main problems and suggestions for future works.  相似文献   

2.
3.
Delta-winglet vortex generators (VGs) are known to enhance the heat transfer between the energy-carrying fluid and the heat transfer surfaces in plate-fin-and-tube banks. In this study optimal angles of attack of the delta-winglets are investigated based on the Pareto optimal strategy. The optimization process combines a CFD analysis, genetic algorithms and the response surface methodology. The angle of attack of a pair a delta-winglet-type VGs mounted behind each tube is varied between β = ?90° and +90°. Three circular tube rows with inline and staggered tube arrangements are investigated for Reynolds numbers from 200 to 1200 (based on the inlet height and inlet velocity). The flow structure and heat transfer behavior is analyzed in detail for certain cases and the staggered and the inline tube arrangements are compared. Finally, for each of these arrangements the optimal sets of angles of attack for different Reynolds numbers are presented.  相似文献   

4.
The augmentation of convective heat transfer of a turbulent flow using delta‐winglet vortex generators (VG) in a triangular duct was experimentally investigated. Two side walls of the heated test section are electrically heated with a constant heat flux while the lower wall is indirectly heated. Single, double, and triple pairs of VG are utilized. Each pair of VG was punched on one wall of the test duct. The effects of the number of VG pairs, the VG angle of attack, the VG location from the leading edge of the test duct, the VG geometry, and Reynolds number are examined in this paper. The results indicate that the Nusselt number and friction factor are relatively proportional to the size, number, and the inclination angle of the VG. The Nusselt number increases and the friction factor decreases as the Reynolds number increases. The present results were compared with the available literature and they show good agreement. Correlation equations of Nusselt number and friction factor for turbulent flow are developed, for the cases studied, as a function of Reynolds number and VG angle of attack. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20382  相似文献   

5.
Fluid flows in passages whose cross-sectional area increases in the streamwise direction are prone to separation. Here, the flow in a conical diffuser fed by a fully developed velocity at its inlet and mated at its downstream end to a long circular pipe is investigated by means of numerical simulation. A universal flow-regime model was used to accommodate possible laminarization of flows having moderate-turbulent and transitional Reynolds numbers at the diffuser inlet. It was found that flow separation occurred for a diffuser expansion angle of 5° for inlet Reynolds numbers less than about 2000. This finding invalidates a prior rule-of-thumb that flow separation first occurs at a divergence angle of seven degrees. Results from the 10 and 30° simulations showed separation at all investigated Reynolds numbers. The largest streamwise length of the separation zones occurred at the lower Reynolds numbers.  相似文献   

6.
A study of the convective heat transfer enhancement of heated surfaces through the use of active delta wing vortex generators is reported in this paper. The surface-mounted vortex generators (VGs) change their shape to intrude further into the flow at high temperatures to enhance heat transfer, while maintaining a low profile at low temperatures to minimise flow pressure losses. The VGs are made from shape memory alloys and manufactured in a selective laser melting process. Experiments have been carried out in a rectangular duct supplied with laminar-transition air flow. In the test section, a single, and a pair of active delta wing VGs were placed near the leading edge of a heated plate and tested separately for their heat transfer enhancement effects using infrared thermography. The pressure difference across the test section was also measured to determine the pressure drop penalty associated with the obstruction caused by the vortex generators in their active positions. Promising shape memory response was obtained from the active VG samples when their surface temperatures were varied from 20 °C to 65 °C. The vortex generators responded by increasing their angles of attack from 10° to 38° and as the designs were two-way trained, they regained their initial position and shape at a lower temperature. At their activated positions, maximum heat transfer improvements of up to 90% and 80% were achieved by the single and double wings respectively along the downstream direction. The flow pressure losses across the test section, when the wings were activated, increased between 7% and 63% of the losses at their de-activated positions, for the single and double VG respectively.  相似文献   

7.
The potential of punched winglet type vortex generator (VG) arrays used to enhance air-side heat-transfer performance of finned tube heat exchanger is numerically investigated. The arrays are composed of two delta-winglet pairs with two layout modes of continuous and discontinuous winglets. The heat transfer performance of two array arrangements are compared to a conventional large winglet configuration for the Reynolds number ranging from 600 to 2600 based on the tube collar diameter, with the corresponding frontal air velocity ranging from 0.54 to 2.3 m/s. The effects of different geometry parameters that include attack angle of delta winglets (β = 10 deg, β = 20 deg, β = 30 deg) and the layout locations are examined. The numerical results show that for the punched VG cases, the effectiveness of the main vortex to the heat transfer enhancement is not fully dominant while the “corner vortex” also shows significant effect on the heat transfer performance. Both heat transfer coefficient and pressure drop increase with the increase of attack angle β for the side arrangements; the arrays with discontinuous winglets show the best heat transfer enhancement, and a significant augmentation of up to 33.8–70.6% in heat transfer coefficient is achieved accompanied by a pressure drop penalty of 43.4–97.2% for the 30 deg case compared to the plain fin. For the front arrangements of VGs higher heat transfer enhancement and pressure drop penalty can be obtained compared to that of the side arrangement cases; the case with front continuous winglet arrays has the maximum value of j/f, a corresponding heat transfer improvement of 36.7–81.2% and a pressure drop penalty of 60.7–135.6%.  相似文献   

8.
Heat transfer enhancement was investigated in a coaxial-pipe heat exchanger using dimples as the heat transfer modification on the inner tube. Tube-side Reynolds numbers were in the range of 7.5×103–5.2×104 for water flow. A constant annular mass flow rate was chosen to obtain the highest possible Reynolds number of 1.1×104. Typically, the heating water inlet temperature was 68.1±0.1C.All six variants with inward-facing, raised dimples on the inner tube increased the values of heat transfer coefficient significantly above those for the smooth tube. Heat transfer enhancement ranged from 25% to 137% at constant Reynolds number, and from 15% to 84% at constant pumping power. At a constant Reynolds number, the relative J factor (ratio of heat transfer coefficient to friction factor, relative to smooth tube values), had values from 0.93 to 1.16, with four dimpled tube configurations having values larger than unity. Despite the extremely simple design, this outperforms almost all heat transfer enhancements recommended in the literature. A correlation based on the results of the present work appears to be sufficiently accurate for predicting heat transfer coefficients and friction factors for the design of dimpled-tube heat exchangers.  相似文献   

9.
Triangular ducts fitted with various kinds of delta-winglet type vortex generators (VGs) are commonly used to achieve compactness and heat transfer enhancement in many industries. Successive locations of VGs on the inner surfaces of the ducts can be arranged in Common Flow Up (CFU) and Common Flow Down (CFD) orientations. In the present numerical study simultaneous effects of orientation and streamwise distance between VGs on triangular fin performance is carried out considering both global and local flow and heat transfer fields. With the configurations considered in this study, a CFD–CFU orientation and a nondimensional streamwise distance of 0.5 is determined as the best configuration. “RNG k-?” turbulence model with “Enhanced wall treatment” option is determined as the best turbulence model to predict the flow fields inside the triangular duct with built-in VGs, for Reynolds number of 5000.  相似文献   

10.
Passive vane–type vortex generators (VGs) are commonly used on wind turbine blades to mitigate the effects of flow separation. However, significant uncertainty surrounds VG design guidelines. Understanding the influence of VG parameters on airfoil performance requires a systematic approach targeting wind energy‐specific airfoils. Thus, the 30%‐thick DU97‐W‐300 airfoil was equipped with numerous VG designs, and its performance was evaluated in the Delft University Low Turbulence Wind Tunnel at a chord‐based Reynolds number of 2×106. Oil‐flow visualizations confirmed the suppression of separation as a result of the vortex‐induced mixing. Further investigation of the oil streaks demonstrated a method to determine the vortex strength. The airfoil performance sensitivity to 41 different VG designs was explored by analysing model and wake pressures. The chordwise positioning, array configuration, and vane height were of prime importance. The sensitivity to vane length, inclination angle, vane shape, and array packing density proved secondary. The VGs were also able to delay stall with simulated airfoil surface roughness. The use of the VG mounting strip was detrimental to the airfoil's performance, highlighting the aerodynamic cost of the commonly used mounting technique. Time‐averaged pressure distributions and the lift standard deviation revealed that the presence of VGs increases load fluctuations in the stalling regime, compared with the uncontrolled case.  相似文献   

11.
假设扩压器内部流动为不可压缩的二维流动,采用小扰动方法建立了无叶扩压器的状态矩阵模型,并利用文献中数据对扩压器进口的射流一尾迹型扰动进行了分析.结果表明:径向速度扰动衰减比切向速度快;径向速度扰动衰减的快慢主要受进口流量的影响,进口相对流动角对其影响不大;叶轮叶片数对扰动衰减也有一定影响,叶片数越多,沿径向的速度扰动和角动量衰减就越快;叶轮和有叶扩压器之间的无叶空间可能是引起压缩机失稳的关键因素.模型分析和已有文献十分吻合,验证了模型的正确性.  相似文献   

12.
In the present work, convection heat transfer of water at supercritical pressure in a narrow annulus at low Reynolds numbers (less than 1500) has been investigated numerically. The continuity, momentum and energy equations have been solved simultaneously using computational fluid dynamics techniques with the inlet Reynolds number ranging from 250 to 1000, Grashof number from 2.5 × 105 to 1 × 106 and the inlet fluid temperature from 360 °C to 380 °C. In all of the case studies, a sub-cooled water flow at supercritical pressure (25 MPa) and a temperature close to the pseudo-critical point enters the annular channel with constant heat flux at inner wall surface and insulated at outer wall. To calculate the velocity and temperature distributions of the flow, discretized form of the governing equations in the cylindrical coordinate system are obtained by the finite volume method and solved by the SIMPLE algorithm. It has been shown that the effect of buoyancy is strong and causes extensive increase in velocity near the inner wall, and consequently an increase in the convective heat transfer, which is desirable. Besides, the effects of inlet Reynolds number, Grashof number and inlet temperature on the velocity distribution and also on the heat transfer have been investigated.  相似文献   

13.
提出了一种用于超临界液化天然气换热的微小通道换热器整体性能提高的被动式强化技术并进行了数值模拟验证和设计优化。在普通的矩形微小通道内利用3D激光打印技术在壁面加工横向圆弧形微沟槽以强化换热能力。首先对圆弧形微沟槽的槽深、槽宽和相邻两槽道中心距等几何尺寸进行了优化计算,然后讨论了在使用强化技术后工质温度在跨越临界温度的120K-250K范围内的换热强化和流动特性,进一步考察了工质温度、质量流量(雷诺数)和进口压力对换热系数(努塞尔数)、摩擦因子和综合效益系数的影响。此外,通过微沟槽附近的局部流动特性分析强化换热机理,数值模拟结果表明带有横向微沟槽的紧凑式换热器的综合换热效益得到30%左右增加,显示了优异的换热强化综合效果  相似文献   

14.
The effects of biofouling on air-side heat transfer and friction characteristics under wet conditions of three biofouled finned tube heat exchangers and one clean finned tube heat exchanger were investigated experimentally. Experimental results indicate that the biofouled fin efficiency of the evaporator decreases by 15.5% compared with the clean evaporator under the condition of the biofouled area ratio of 60% at the inlet air velocity of 2.0 m/s; The ranges of friction fouling factor and heat transfer fouling factor are 19.8%–43.1% and −15.6%−13.1%, respectively; a small quantity of biofouled particles can enhance heat transfer at low Reynolds number, and the enhancement effect decreases with the increase of Reynolds number.  相似文献   

15.
The effects of biofouling on air-side heat transfer and friction characteristics under wet conditions of three biofouled finned tube heat exchangers and one clean finned tube heat exchanger were investigated experimentally. Experimental results indicate that the biofouled fin efficiency of the evaporator decreases by 15.5% compared with the clean evaporator under the condition of the biofouled area ratio of 60% at the inlet air velocity of 2.0m/s; The ranges of friction fouling factor and heat transfer fouling factor are 19.8%―43.1% and ―15.6%―13.1%, respectively; a small quantity of biofouled particles can enhance heat transfer at low Reynolds number, and the enhancement effect decreases with the increase of Reynolds number.  相似文献   

16.
This study presents numerical computation results on laminar convection heat transfer in a rectangular channel with a pair of rectangular winglets longitudinal vortex generator punched out from the lower wall of the channel. The effect of the punched holes and the thickness of the rectangular winglet pair to the fluid flow and heat transfer are numerically studied. It is found that the case with punched holes has more heat transfer enhancement in the region near to the vortex generator and lower average flow frictional coefficient compared with the case without punched holes. The thickness of rectangular winglet can cause less heat transfer enhancement in the region near to the vortex generator and almost has no significant effect on the total pressure drop of the channel. The effects of Reynolds number (from 800 to 3000), the attack angle of vortex generator (15°, 30°, 45°, 60° and 90°) were examined. The numerical results were analyzed from the viewpoint of field synergy principle. It was found that the essence of heat transfer enhancement by longitudinal vortex can be explained very well by the field synergy principle, i.e., when the second flow generated by vortex generators results in the reduction of the intersection angle between the velocity and fluid temperature gradient, the heat transfer in the present channels will be enhanced. Longitudinal vortices (LVs) improve the synergy between velocity and temperature field not only in the region near LVG but also in the large downstream region of longitudinal vortex generator. So LVs enable to enhance the global heat transfer of channel. Transverse vortices (TVs) only improve the synergy in the region near VG. So TVs can only enhance the local heat transfer of channel.  相似文献   

17.
This paper examines experimentally the effect of jet vortex technology on enhancing the heat transfer rate within a double pipe heat exchanger by supplying the heat exchanger with water at different vortex strengths. A vortex generator with special inclined holes with different inlet angles was designed, manufactured, and integrated within the heat exchanger. In this study, four levels of Reynolds number for hot water in the annulus (Reh) were used, namely, 10,000; 14,500; 18,030; and 19,600. Similarly, four levels of Reynolds number for cold water in the inner tube (Rec) were used, namely, 12,000; 17,500; 22,500; and 29,000. As for the inlet flow angle (θ), four different levels were selected, namely, 0°, 30°, 45°, and 60°. The temperature along the heat exchanger was measured utilizing 34 thermocouples installed along the heat exchanger. It was found that increasing the inlet flow angle (θ) and/or the Reynolds number results in an increase in the local Nusselt number, the overall heat transfer coefficient, and the ratio of friction factor. It is revealed that the percentage increase in the average Nusselt number due to swirl flow compared to axial flow was 10%, 40%, and 82% for an inlet flow angle of 30°, 45°, and 60°, respectively.  相似文献   

18.
The present study investigates numerically the simultaneously developing unsteady laminar fluid flow and heat transfer inside a two dimensional wavy microchannel caused by a sinusoidal varying velocity component at an inlet. The flow was both thermally and hydro dynamically developing while the channel walls were kept at a uniform temperature. The simulation was performed in the laminar regime for Prandtl number 7(water) and Reynolds number ranging from 0.1 to 100. A Wavy microchannel having non-dimensional hydraulic diameter 1 with varying pulsating amplitude and frequency represented by the Strouhal number was designed for the given Reynolds number range. Based on the comparison with steady flow in a wavy channel it was found that imposed sinusoidal velocity at the inlet can provide improved heat transfer performance at different amplitudes (0.2, 0.5, 0.8) and frequencies (1, 5, 10) while keeping the pressure drop within acceptable limits.  相似文献   

19.
Forced convection in a combined entry developing length of a convergent pipe under constant wall heat flux boundary condition is performed in this work. Influences of the convergence angle, Reynolds, and Prandtl numbers on the heat transfer and flow field have been investigated. The numerical results are obtained for a wide range of convergence angles (0°–25°), Reynolds numbers (700–2100), and Prandtl numbers (0.707, 5.83). Compared to a traditional pipe, a substantial increase in heat transfer has been achieved with an increase in the pressure drop as the convergence angle increases. In this work, the effect of convergence angle, Reynolds number, and Prandtl number on the overall flow and thermal performance for the aforementioned configuration is investigated. To the best of authors’ knowledge, this investigation has been done for the first time, and it provides new and significant information regarding heat transfer enhancement utilizing a convergent pipe.  相似文献   

20.
Bubble formation in saturated flow boiling in 2D microchannels, generated from a microheater under constant wall heat flux or constant wall temperature conditions, is studied numerically based on a newly developed lattice Boltzmann model for liquid-vapor phase change. Simulations are carried out to study effects of inlet velocity, contact angle, and heater size on saturated flow boiling of water under constant wall heat flux conditions. Important information, such as effects of static contact angle on nucleation time and nucleation temperature, which was unable to be obtained by other numerical simulation methods, is obtained. Furthermore, effects of inlet velocity, contact angle, and superheat on nucleate boiling heat transfer in steady flow boiling of water under constant wall temperature conditions are also presented. It is found that the nucleate boiling heat transfer at the microheater is higher if the heater surface is more hydrophilic, because the superheated vapor at the hydrophilic wall has a thinner thermal boundary layer and a larger thermal conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号