首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The microstructure of the tissue has a very important determining effect on its performance. Herein, two calcium phosphate cement (CPC)/small intestinal submucosa(SIS) composites bionic bone scaffolds with different microstructures were fabricated by rolling or/ and assembling method. The microstructure, 3D morphology, the crystal phase and mechanical properties of the scaffolds were investigated by micro CT, XRD, FIIR, SEM and electronic universal testing machines respectively. The results showed that the pore size of all scaffolds are in the range of 100–400?µm, which are beneficial to cells growth, migration, and tissue vascularization. Their porosity and the specific surface area were 14.53?±?0.76%, 8.74?±?1.38?m2/m3 and 32?±?0.58%, 26.75?±?2.69?m2/m3 separately. The high porosity and the large specific surface area can provide a larger space and contact area for cells adhesion and proliferation. Meanwhile, compressive strength of the scaffolds soaked were 10?MPa and 27?MPa, about 1.2 folds and 3.2 folds of the original scaffolds, respectively. The results are derived from different microstructures of the scaffolds and chemical bonds between SIS and new phases (hydroxyapatite), and the scaffolds performance steadily increased at near the physiological conditions. Finally, biocompatibility of the scaffolds was evaluated by CCK8, bionic microstructure scaffolds are no cytotoxicity and their biocompatibility is favorable. Based on the microstructure, compressive strength and cytotoxicity of the scaffolds, bionic Harvarsin microstructure CPC/SIS composite scaffold is expected to turn into a scaffold with the excellent properties of real bone.  相似文献   

2.
Porous ceramic scaffolds are synthetic implants, which support cell migration and establish sufficient extracellular matrix (ECM) and cell-cell interactions to heal bone defects. Hydroxyapatite (HA) scaffolds is one of the most suitable synthetic scaffolds for hard tissue replacement due to their bioactivity, biocompatibility and biomimetic features. However, the major disadvantages of HA is poor mechanical properties as well as low degradability rate and apatite formation ability. In this study, we developed a new method to improve the bioactivity, biodegradability and mechanical properties of natural hydroxyfluorapatite (HFA) by applying two-step coating process including ceramic and polymer coats. The structure, morphology and bioactivity potential of the modified and unmodified nanocomposite scaffolds were evaluated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and energy dispersive spectroscopy (EDS). The scaffold with optimized mechanical properties was HFA-30?wt%HT (HT stands for hardystonite) with a total porosity and pore size of 89?±?1 and 900–1000?µm, respectively. The compressive modulus and strength of HFA (porosity ~ 93?±?1) were improved from 108.81?±?11.12–251.45?±?12.2?MPa and 0.46?±?0.1–1.7?±?0.3?MPa in HFA-30?wt%HT sample, respectively. After applying poly(ε-caprolactone fumarate) (PCLF) polymer coating, the compressive strength and modules increased to 2.8?±?0.15 and 426.1?±?15.14?MPa, respectively. The apatite formation ability of scaffolds was investigated using simulated body fluid (SBF). The results showed that applying the hardystonite coating improve the apatite formation ability; however, the release of ions increased the pH. Whereas, modified scaffolds with PCLF could control the release of ions and improve the apatite formation ability as well.  相似文献   

3.
This study evaluated the load bearing capacity of minimal invasive restoration alternatives on severely worn teeth after cyclic loading. Sound human maxillary incisors (N?=?72, n?=?9 per group) were randomly divided into nine experimental groups to receive one of the following restoration types: Group 1: Intact tooth, Group 2: Direct resin composite, Group 3: Lingual: Indirect resin composite, Labial: Ceramic veneer with lingual overlap, Group 4: Lingual: Indirect resin composite with lingual overlap, Labial: Ceramic, Group 5: Lingual: Direct composite, Labial: Ceramic, Group 6: Lingual: Feldspathic Ceramic, Labial: Feldspathic ceramic, Group 7: Lithium disilicate crown, Group 8: Metal-ceramic crown. Teeth were prepared simulating erosion/wear conditions. Specimens were subjected to cyclic loading (1,200,000 cycles, 5–55?°C) and then loaded to failure from the lingual surface at 105° inclination (1?mm/min). Data (Newton) were analyzed using one-way ANOVA, Tukey`s tests and Weibull moduli were calculated (α?=?0.05). Significant differences were observed between the groups for the initial (p?=?0.006) and maximum fracture load (p?=?0.002). Group 3 (55?±?36) presented significantly lower initial fracture load compared to other groups (79?±?35–134?±?36) (p?<?0.05). When maximum fracture load is considered, control group (1) (602?±?355) and from restored groups 2 (449?±?144) and 4 (495?±?291) showed significantly higher results (p?<?0.05). Weibull modulus for the maximum fracture load was the highest for Group 2 (m?=?3.47) among all groups (m?=?1.61–4.18). Groups 2, 3, 6 presented the highest incidence of repairable failures. Based on the results, severely worn teeth could be restored with lingual direct resin composite and labial veneering with indirect resin with overlap.  相似文献   

4.
Silk fibroin–microcrystalline cellulose (cellulose whisker) composite films with varied compositions were prepared by casting mixed aqueous solution/suspensions of the two components. Silk fibroin was dissolved in 10M LiSCN followed by dialysis; a cellulose whisker suspension was prepared by sulfuric acid hydrolysis of tunicate cellulose. Macroscopically homogeneous films were obtained at all mixing ratios. While the Young's modulus of the composite films showed a linear, additive dependence on the mixing ratio, the tensile strength and ultimate strain showed a maximum at a 70–80% cellulose content, reaching five times those of fibroin‐alone or cellulose‐alone films. At the same mixing ratio, infrared spectra of the composite films showed a shift of the amide I peak from 1654 to 1625 cm?1, indicating the conformational change of fibroin from a random coil to a β structure (silk II) at the whisker–matrix interface. This change seems to be induced by contact of fibroin molecules with a highly ordered surface of cellulose whisker. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3425–3429, 2002  相似文献   

5.
Many synthetic scaffolds have been used as vascular substitutes for clinical use. However, many of these scaffolds may not show suitable properties when they are exposed to physiologic vascular environments, and they may fail eventually because of some unexpected conditions. Electrospinning technology offers the potential for controlling the composition, structure, and mechanical properties of scaffolds. In this study, a tubular scaffold (inner diameter = 4.5 mm) composed of a polylactide (PLA) fiber outside layer and a silk fibroin (SF)–gelatin fiber inner layer (PLA/SF–gelatin) was fabricated by electrospinning. The morphological, biomechanical, and biological properties of the composite scaffold were examined. The PLA/SF–gelatin composite tubular scaffold possessed a porous structure; the porosity of the scaffold reached 82 ± 2%. The composite scaffold achieved the appropriate breaking strength (1.28 ± 0.21 MPa) and adequate pliability (elasticity up to 41.11 ± 2.17% strain) and possessed a fine suture retention strength (1.07 ± 0.07 N). The burst pressure of the composite scaffold was 111.4 ± 2.6 kPa, which was much higher than the native vessels. A mitochondrial metabolic assay and scanning electron microscopy observations indicated that both 3T3 mouse fibroblasts and human umbilical vein endothelial cells grew and proliferated well on the composite scaffold in vitro after they were cultured for some days. The PLA/SF–gelatin composite tubular scaffolds presented appropriate characteristics to be considered as candidate scaffolds for blood vessel tissue engineering. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
A novel mullite-bonded SiC-whisker-reinforced SiC matrix composite (SiCw/SiC, SiC whisker-to-SiC powder mass ratio of 1:9) was designed and successfully prepared. Before preparing the composite, the inexpensive lab-made SiCw was first modified by an oxidation/leaching process and then coated with Al2O3. The kinetics results indicate that the oxidation process can be described by improved shrinking-cylinder models. The aspect ratio of SiCw improved after modification. Subsequently, raw materials with a SiC–SiO2–Al2O3 triple-layered structure were obtained after the Al2O3-coating process and used as feedstocks during the subsequent hot-pressing sintering. Finally, the characterization of the composites indicates that the mullite-bonded sample performs better (relative density of 93.8?±?1.4%, flexural strength of 533.3?±?18.2?MPa, fracture toughness of 13.6?±?2.1?MPa?m1/2, and Vickers hardness of 20.6?±?2.5?GPa) than the reference sample without the mullite interface. The improved toughness could essentially be attributed to the moderately strong interface bonding and effective load transfer effects of the mullite interface.  相似文献   

7.
This study assessed adhesion of bulk-fill resin-composites as core and post materials only versus the use of fiber resin composite (FRC) posts. Human teeth (N?=?84) were cut at the CEJ and endodontically treated and randomly divided into seven groups: TP: Titanium post (Flat Head T); SFRC: S2-glass FRC (Pinpost); EFRC1: E-glass FRC (GC Everstick) directly bonded; GFRC: E-glass FRC (Glassix Nordin); EFRC2: E-glass FRC (Everstick); BF1: Bulk-fill resin (Surefill SDR); BF2: Bulk-fill resin (SonicFill). Groups TP, SFRC, EFRC and GFRC were cemented (Panavia 21), while other groups were bonded directly to the intraradicular dentin. The core parts were constructed using a resin composite (G-aenial) except for Groups BF1 and BF2. The core-cervical dentin interface was loaded under shear forces. Push-out tests were performed in a Universal Testing Machine (1?mm/min). Data (MPa) were analyzed using two-way ANOVA and Tukey`s tests (α?=?0.05). Not the root level (p?>?0.05) but the type of core and post material significantly affected shear and push-out bond results (p?<?0.001). BF1 (9.2?±?2.1) and BF2 (9.3?±?3.1) showed significantly lower bond strength to the cervical dentin (p?<?0.05) compared to other groups (11.6?±?2.5–19?±?6.8). FRC post types did not show significant difference being higher than those of TP, BF1 and BF2 (0.57?±?0.37–2.34?±?1.98) (p?>?0.05). Partial cohesive core fracture was more common while BF1 and BF2 showed exclusively adhesive failures. Cohesive failure in the cement was frequent in Group TP (53%) compared to other groups (3–24%). BF1 and BF2 presented exclusively complete adhesive failure of the bulk-fill material.  相似文献   

8.
Polyacrylamide‐co‐acrylic acid (PA) added to shake flask cultures of Acetobacter xylinum at concentrations up to 3 g dm?3 resulted in increased production of bacterial cellulose. For PA concentrations of 0–3 g dm?3, 7‐day cellulose production rose monotonically from 2.7 ± 0.8 to 6.5 ± 0.5 g dm?3 at a shaker speed of 175 rpm, and from 1.7 ± 0.01 to 3.7 ± 0.5 g dm?3 at shaker speed of 375 rpm. Addition of PA also changed the morphology of the biomass from amorphous/stringy forms to spheroidal particles with diameters ≤2 mm. Similarly, bioreactor cultures grown in the absence of PA formed long fibrous masses which deposited on the internals, while those grown in the presence of 1–2 g dm?3 PA formed small discrete particles with diameters ≤0.1 mm. Tests performed with 1 and 2 g dm?3 PA, and stirrer speeds from 500 to 900 rpm, appeared to give the highest cellulose concentration of 5.3 ± 0.7 g dm?3 in 64–68.5 h in the presence of 2 g dm?3 PA at 700 rpm, although this value was statistically indistinguishable from that obtained at 1 g dm?3 PA and 900 rpm. A qualitative model is proposed to describe the mechanisms by which PA affects biomass morphology, resulting in its advantageous formation as small, dispersed, spheroidal pellets. Quantitative analysis of the results gave inverse correlations between both the fraction of fructose carbon going to cellulose synthesis and the specific fructose consumption rate, and the maximum cellulose concentration and the fraction of fructose carbon going to by‐product formation. Since cellulose yield was almost universally improved by higher polyacrylamide concentration, it appears likely that increased viscosity reduces fructose uptake rate by limiting mass transfer. Copyright © 2003 Society of Chemical Industry  相似文献   

9.
In the present study nanocomposite fibers and film scaffolds based on poly (2-hydroxy ethyl methacrylate) and microcrystalline cellulose were prepared by electrospinning method and solvent casting method, respectively. Paclitaxel (20 ppm) was incorporated during the preparation of fibers and film to result in paclitaxel-incorporated nanocomposite film and fibers with an encapsulation efficiency of 63% and 72%, respectively. These prepared nanocomposite films and fibers were characterized and confirmed by FTIR, XRD and SEM analysis. The biocompatibility of the nanocomposite scaffolds were assessed using VERO cell lines. The in vitro release of paclitaxel from the nanocomposite fibers, and film was found to be 74 ± 1.2% and 64 ± 1.2%, respectively.  相似文献   

10.
To increase the value and promote the utilization of woody processing residues, poplar sawdust was used to produce xylooligosaccharides (XOS) with polymerization degrees of 2–6 by acetic acid catalysis. This process is considered to be an environmental friendly process, and the remaining solid fraction was decomposed to fermentable sugars by enzymatic hydrolysis. Response surface methodology (RSM) was applied to determine the main factors affecting the yield of XOS. XOS production was optimal at 170?±?3?°C with a 6.5?±?1% acetic acid concentration and 27?±?2?min reaction time. These conditions produced a 36.0?±?0.8% XOS yield from xylan, similar to the predicted value from the model. Careful analysis of the kinetic profile of XOS revealed that xylobiose to xylohexaose were the main products. Detectable degraded chemicals accounted for 71.0% xylan during acidic hydrolysis. When using enzymatic hydrolysis at a cellulase loading of 20 FPU/g cellulose, a 51.0% yield was achieved, which represented an 80% increase relative to pretreated autohydrolysis (28.3%), and reached production yields similar to that of diluted sulfuric acid pretreatment.  相似文献   

11.
This study compared the effect of different adhesive systems and composite resins on the shear bond strength (SBS) of repaired high-viscosity bulk-fill composites(Tetric EvoCeram Bulk Fill) and investigated failure modes. One hundred twenty cylindrical bulk-fill composite blocks (diameter 5?mm) were fabricated and thermocycled for 5000 cycles (5–55?°C). Specimens were roughened by diamond bur and divided into 8 groups (n?=?15). Bulk-fill blocks were repaired with the same material or nanohybrid composite resin(Tetric EvoCeram Nanohybrid) (diameter 3?mm) using different adhesive systems:Tetric N-Bond Universal (TSE);37% phosphoric acid etching?+?Tetric N-Bond Universal (TER); Clearfil SE Bond (CSE); 37% phosphoric acid etching?+?AdperTMSingle Bond 2(SB). After repair procedures, all specimens were thermocycled again. The shear bond strengths were measured for all specimens using a universal test machine (crosshead speed of 1?mm/min). Cohesive strengths of bulk-fill composites were measured and described as control group. Debonded surfaces were observed with a stereomicroscope under 10x magnification to determine mode of failure. The SBS data of all groups was statistically analyzed by two-way ANOVA and Bonferroni correction test (p?<?0.05). The specimens repaired with bulk-fill composites showed significantly higher SBS values (25.86?±?5.74, 27.05?±?4.93, 24.49?±?6.95MPa) than those with nanohybrid composites (20.41?±?3.70, 22.08?±?6.37, 18.74?±?6.40?MPa) for TER,CSE,SB, respectively (p?<?0.05). There were no significant differences in SBS according to the type of adhesive systems for both repair materials (p?>?0.05). The predominant mode of failure was a mixed type in the restorative material except for the ones repaired with nanohybrid composites using AdperTMSingle Bond 2. High-viscosity bulk-fill composites could be successfully repaired with the same materials. SBS of repaired bulk-fill composites reached cohesive strength for all tested groups.  相似文献   

12.
A kind of B4C/SiC composite ceramic toughened by graphene platelets and Al was fabricated by spark plasma sintering. The effects of graphene platelets and Al on densification, microstructure and mechanical properties were studied. The sintering temperature was decreased about 125–300?°C with the addition of 3–10?wt% Al. Al can also improve fracture toughness but decrease hardness. The B4C/SiC composite ceramic with 3?wt%Al and 1.5?wt% graphene platelets sintered at 1825?°C for 5?min had the optimal performances. It was fully densified, and the Vickers hardness and fracture toughness were 30.09?±?0.39?GPa and 5.88?±?0.49?MPa?m1/2, respectively. The fracture toughness was 25.6% higher than that of the composite without graphene platelets. The toughening mechanism of graphene platelets was also studied. Pulling-out of graphene platelets, crack deflection, bridging and branching contributed to the toughness enhancement of the B4C-based ceramic.  相似文献   

13.
High-temperature mechanical and thermal properties of h-BN based composite containing amorphous silica and Yb-riched silicate glass phases were systematically investigated in this work. Owing to anisotropic microstructure of h-BN matrix, the obtained composite demonstrates anisotropic mechanical and thermal properties. The composite possesses higher elastic modulus at 1673?K than that at room temperature and presents excellent high-temperature stiffness. Flexural strengths in parallel and perpendicular directions reach 496?±?22 and 258?±?21?MPa at?1073?K, respectively, and increases by 74 and 66% compared with the room-temperature strengths of 285?±?4?and 155?±?5?MPa. The composite containing dual glass phases shows lower coefficients of thermal expansion in the temperature range of 473–900?K, the values are ?1.4?×?10?6 and 0.3?×?10?6 ?K?1 for the perpendicular and parallel directions, respectively. Thermal conductivities in the perpendicular and parallel directions at 373?K are 24.8 and 14.8?W?m?1?K?1, respectively, and then decrease to 14.9 and 9.3?W?m?1?K?1 at 1473?K.  相似文献   

14.

Background

Energy drinks have become the most used caffeine-containing beverages in the sport setting. The aim of this study was to determine the effects of two doses of a caffeine-containing energy drink on muscle performance during upper- and lower-body power-load tests.

Methods

In a randomized order, twelve active participants ingested 1 and 3?mg of caffeine per kg of body weight using a commercially available energy drink (Fure?, ProEnergetics) or the same drink without caffeine (placebo; 0?mg/kg). After sixty minutes, resting metabolic rate, heart rate and blood pressure were determined. Then, half-squat and bench-press power production with loads from 10 to 100% of 1 repetition maximum was determined using a rotator encoder.

Results

In comparison to the placebo, the ingestion of the caffeinated drink increased mean arterial pressure (82?±?7?P?<?59?±?8?<?62?±?8 beats/min, respectively; P?P?P?Conclusions A caffeine dose of at least 3?mg/kg in the form of an energy drink is necessary to significantly improve half-squat and bench-press maximal muscle power.  相似文献   

15.
This study evaluated the degree of conversion (DC) and adhesion of methacrylate-based resin cements to glass fiber posts at different regions of intraradicular dentin. Single-rooted teeth (N?=?24, n?=?12 per group) were cut at the cement–enamel junction (CEJ), endodontically treated and post space (depth?=?8 mm) was prepared. Teeth were randomly divided into two groups according to the resin cements: (a) Group ML: methacrylate-based cement with phosphonic acid acrylate (Multilink Automix, Ivoclar Vivadent); (b) Group RXU: methacrylate-based cement with phosphoric acid acrylate (RelyX Unicem 2 Automix, 3 M ESPE). Fiber-reinforced composite root posts (RelyX Fiber Post, 3 M ESPE) were cemented according to the manufacturers’ instructions of the resin cements. Root slices of 2-mm thickness (n?=?3 per tooth) were cut below the CEJ 1, 3, and 5 mm apically. The DC of each section was analyzed with micro-Raman spectrometer and push-out test was performed in the Universal Testing Machine (0.5 mm/min). After debonding, all specimens were analyzed using optical microscope to categorize the failure modes. While data (MPa) were statistically evaluated using Kruskal Wallis, Mann–Whitney U tests for DC data 3-way ANOVA and Tukey’s tests were used (α?=?0.05). Regardless of the resin cement type, the mean push-out bond strength results (MPa), were significantly higher for the coronal slices (ML: 9.1?±?2.7; RXU: 7.3?±?4.1) than those of the most apical ones (ML: 7?±?4.9; RXU: 2.89?±?1.5) (p?=?0.002). Resin cement type and (p?p?=?0.002) significantly affected the DC values, while the interaction terms were not significant (p?=?0.606). Overall, DC was significantly higher for ML (67?±?8.2%) than RXU (26?±?8.8%) (p?相似文献   

16.
In the present study, an attempt has been made to improve cell supportive property of chitosan/nano beta tri‐calcium phosphate (β‐TCP) composite scaffolds by modification of scaffold surface with fibrin using ethyl‐3‐(3‐dimethylaminopropyl) carbodimide (EDC) as crosslinking agent. The developed fibrin conjugated chitosan/nano β‐TCP composite scaffolds possess desired pore size and porosity in the range of 45–151 µm and 81.4 ± 4.1%, respectively. No significant change in compressive strength of scaffolds was observed before and after fibrin conjugation. The calculated compressive strength of fibrin conjugated and non‐conjugated chitosan/nano β‐TCP scaffolds are 2.71 ± 0.14 MPa and 2.67 ± 0.11 MPa, respectively. Results of cell culture study have further shown an enhanced cell attachment, cell number, proliferation, differentiation, and mineralization on fibrin conjugated chitosan/nano β‐TCP scaffold. The uniform cell distribution over the scaffold surface and cell infiltration into the scaffold pores were assessed by confocal laser scanning microscopy. Furthermore, higher expression of osteogenic specific genes such as bone sialo protein, osteonectin, alkaline phosphatase, and osteocalcin (OC) on fibrin conjugated scaffolds was observed when compared to scaffolds without fibrin. Altogether, results indicate the potentiality of developed fibrin conjugated composite scaffolds for bone tissue engineering applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41534.  相似文献   

17.
In this study, β‐tricalcium phosphate/phosphate‐based glass (β‐TCP/PG) composite spheres were prepared by an extrusion‐spheronization method featuring high production and fine control of sphere size. Subsequently, fully interconnected β‐TCP composite ceramic sphere‐based (TCCS) scaffolds were fabricated by sintering the randomly packed β‐TCP/PG composite spheres. The results manifested that at least 20% microcrystalline cellulose (MCC) was required to obtain β‐TCP/PG composite spheres in good spherical shape. The prepared TCCS scaffolds showed hierarchical pore architecture, which consisted of interconnected macropores among the spheres, a hollow core in the sphere, plentiful medium‐sized pores in the sphere shell and micropores among the grains. The pore architecture and mechanical strength of the TCCS scaffolds could be tailored by adjusting the sintering temperature, sphere size, and amounts of PG and MCC in the β‐TCP/PG composite spheres. This work is believed to open up new paths for the design and fabrication of interconnected bioceramic scaffolds for application in bone regeneration.  相似文献   

18.
This study investigated the adhesion of resin composite to mineral trioxide aggregate based cements after different chemical and physico-chemical surface conditioning methods. Mineral trioxide aggregate based cements (Biodentine, ProRoot MTA, Imicryl MTA) were embedded in Teflon disks (N?=?180). After storing at 37?°C at 100% humidity for 72?h, substrate surfaces were polished using silicon carbide papers. Specimens were allocated to 3 groups to be conditioned with one of the following (n?=?15 per group): a) Adhesive resin (Clearfil SE Bond, CSE), b) Adhesive resin (Adper Single Bond 2, SB2), c) air-abrasion with 30?μm alumina coated with silica?+?silane?+?adhesive resin (ALB), d) no surface conditioning, control group (CON). Microhybrid resin composite (Filtek Z250) was applied on the conditioned substrate surfaces and photo-polymerized. After storage at 37?°C at 100% humidity for 24?h, adhesive interfaces were loaded under shear (1?mm/min) in a universal testing machine. After debonding failure types were analyzed. Data were analyzed using 2-way ANOVA and Tukey’s test (alpha = 0.05). SBS results were significantly affected by surface conditioning (p?<?0.05) and materials (p?<?0.05). Interaction terms were significant (p?<?0.05). Biodentine-ALB resulted in significantly higher SBS values (3.96?±?1.24) compared to those of other combinations, while ALB and SB2 resulted in no significant difference for ProRoot MTA and Imicryl MTA (p?>?.05). CSE (1.36?±?0.5- 1.98?±?0.76) did not significantly increase SBS for all MTA materials compared to the control group (0.8?±?0.52 – 2?±?0.91) (p?>?9.05). While CON groups resulted in exclusively adhesive failures, ALB presented the highest incidence of mixed failures for all materials tested (60–100%).  相似文献   

19.
Conductive polypyrrole‐cellulose acetate films were prepared from cellulose acetate (CA) solution of pyrrole (Py) using wet cast method. In the composite films, Py was used as a solvent for CA which was dissolved with different concentration. Then, to prepare PPy–CA composite film, the Py viscous solution of CA was cast on glass plate and immersed in FeCl3 aqueous solution. When the CA film was formed in the aqueous solution, the polymerized PPy particles having about 1 μm diameter were formed in composite film. The resultant composite films were characterized, showing good film fabrication and electrical conductivity of around 6.9 × 10?4 to 3.6 × 101 S/cm. POLYM. ENG. SCI., 54:78–84, 2014. © 2013 Society of Plastics Engineers  相似文献   

20.
This study evaluated the effect of air-abrasion protocols on the topography, surface wettability and adhesion of resin cement to zirconia. Ceramic specimens (N?=?49; n?=?7) (15?mm × 2?mm) were randomly allocated to seven groups to be treated with: (1) Air-abrasion with 45?μm Al2O3 (A45), (2) 80?μm Al2O3 (A80), (3) 30?μm Al2O3 coated with SiO2 (CoJet) (C30), (4) 30?μm Al2O3 coated with SiO2 (Rocatec Soft) (R30), (5) 110?μm Al2O3 coated with SiO2 (Rocatec Plus) (R110); (6) R110R30 (Rocatec) (R110R30) and (7) control, no conditioning (NC). Air-abrasion was performed using a chairside air-abrasion device (2.5?bar, 10?mm, 90?s). Contact angle measurements were performed using goniometry (n?=?5). MDP-based dual resin cement (Panavia F2.0) was bonded on four locations after air-abrasion protocols (n?=?20 per group). Half of the specimens were tested after 24?h and the other half after thermal cycling (×3000, 5–55?°C). Data were analyzed using 1-, 2-way ANOVA and Tukey’s test (alpha = 0.05). Significantly lower contact angle values were observed for groups C30 (62.6?±?0.91), R30 (61.91?±?1.05) and R110R30 (61.54?±?1.02) compared to those of other groups (65.5?±?0.9–110.61?±?0.9) (p?<?0.05). In dry conditions, surface conditioning methods tested did not show significant effect on bond strength (MPa) (10.57?±?1.42–16.86?±?2.54) (p?=?0.238). After thermocycling, bond strength results decreased significantly (p?<?0.05) (12.6–51.2%). R110 (7.18?±?1.34) and A80 (4.92?±?1.53) showed significantly higher bond strength compared to other groups (2.13?±?0.73–4.16?±?1.34) (p?<?0.05). The best wettability and adhesion results with MDP-based resin cement to zirconia was achieved with A80 and R110 air-abrasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号