首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of heat-shock treatment to selectively enrich acidogenic, H2 producing consortia was investigated for inoculum preparation and to control the process operation. Long term operation (520 days) in suspended-batch mode bioreactors illustrated relative efficiency and feasibility of heat-shock treated consortia (15.78 mol/kg CODR) in enhancing H2 production (3.31 mol/kg CODR) when compared to parent (control) consortia. On the contrary, substrate degradation was higher in the control operation (ξCOD, 62.86%; substrate degradation rate (SDR), 1.34 kg CODR/m3-day) compared to heat-shock operation (ξCOD, 52.6%; SDR, 1.10 kg CODR/m3-day). Heat-shock pretreatment has resulted in a marked fermentation pathway shift towards acetic-butyric acid type production. The microbial diversity illustrated dominance in the Clostridia class after applying heat-shock pretreatment. The redox catalytic currents and Tafel analysis strongly support the conclusion of an improved biocatalyst performance after pretreatment with regards to H2 production.  相似文献   

2.
Experiments were designed to enumerate variation in biohydrogen (H2) production pattern with formate and glucose as carbon source under acidogenic mixed microenvironment. High H2 production was observed with glucose (180 ml) when compared to formate (152 ml). The process was validated with modified Gompertz model (R2 = 0.98). Substrate degradation also showed higher removal of glucose (ξCOD, 82%) compared to formate (ξCOD, 53%). Nevertheless, specific H2 yield of formate (6.6 mol H2/kg CODR) obtained was comparatively higher than glucose (5 mol H2/kg CODR). Variation in H2 production was manifested by change in fatty acid composition and substrate degradation pattern. Acetate was obtained as a major metabolic intermediate from the degradation of glucose and a shift in the biochemical pathway towards formation of butyrate occurred after maximum substrate degradation. The role of substrate-dependent dehydrogenase activity was deciphered during H2 production and was evidenced with bio-electrochemical analysis.  相似文献   

3.
The extracts of Citrus limetta (sweet lime) peelings were evaluated as a fermentable substrate for hydrogen (H2) production by dark-fermentation (acidogenic) using both anaerobic mixed consortia and selectively enriched acidogenic mixed consortia. Extraction was carried by pretreating sweet lime peelings at 121 °C (1 bar pressure) at variable pH (6 and 7) and digestion time (20 and 40 min). Maximum organic matter extraction was observed at pH 7.0 (40 min). Fermentation was performed at different organic loading conditions [OL1, 1.17 kg COD/m3; OL2, 2.35 kg COD/m3; OL3, 4.69 kg COD/m3] under acidophilic microenvironment. H2 production was found to depend on the concentration of the substrate and composition. Increase in organic load showed consistent improvement in H2 production. Operation at OL3 employing selectively enriched inoculum documented higher cumulative H2 production (10.07 mmol) and H2 production rate (0.345 mmol/h) (pH 7; 40 min). Substrate degradation was also found to increase with increase in organic loading. Maximum substrate degradation (SD) was registered at pH 6 (40 min) with anaerobic culture (2.80 kg CODR/m3; ξCOD 31.82%) and at pH 7 (40 min) with selectively enriched acidogenic culture (3.20 kg CODR/m3; ξCOD 36.36%). Concentration of volatile fatty acids (VFAs) also improved with increase in organic load. Maximum VFA concentration (1098 mg/l) was observed with OL3 (pH 7; 40 min) by using selectively enriched culture.  相似文献   

4.
Organic acids viz., acetate and butyrate were evaluated as primary substrates for the production of biohydrogen (H2) through photo-fermentation process using mixed culture at mesophilic temperature (34 °C). Experiments were performed by varying parameters like operating pH, presence/absence of initiator substrate (glucose) and vitamin solution, type of nitrogen source (mono sodium salt of glutamic acid and amino glutamic acid) and gas (nitrogen/argon) used to create anaerobic microenvironment. Experimental data showed the feasibility of H2 production along with substrate degradation utilizing organic acids as metabolic substrate but was found to be dependent on the process parameters evaluated. Maximum specific H2 production and substrate degradation were observed with acetic acid [3.51 mol/Kg CODR-day; 1.22 Kg CODR/m3-day (92.96%)] compared to butyric acid [3.33 mol/Kg CODR-day; 1.19 Kg CODR/m3-day (88%)]. Higher H2 yield was observed under acidophilic microenvironment in the presence of glucose (co-substrate), mono sodium salt of glutamic acid (nitrogen source) and vitamins. Argon induced microenvironment was observed to be effective compared to nitrogen induced microenvironment. Combined process efficiency viz., H2 production and substrate degradation was evaluated employing data enveloping analysis (DEA) methodology based on the relative efficiency. Integration of dark fermentation with photo-fermentation appears to be an economically viable route for sustainable biohydrogen production if wastewater is used as substrate.  相似文献   

5.
We have made an attempt to evaluate the variation in the electron discharge (ED) pattern of anaerobic consortia as a function of pretreatment viz., chemical, heat-shock, acid and oxygen-shock in comparison with untreated mixed consortia during fermentative hydrogen (H2) production. Experiments were performed with dairy wastewater as substrate using anaerobic mixed consortia as biocatalyst (pretreated individually and in combination). Cyclic voltammetry (CV) elucidated significant variation in the ED pattern of mixed consortia along with H2 production and substrate degradation (SD) as a function of pretreatment method applied. Higher ED was observed with all pretreated consortia which can be attributed to the stable proton (H+) shuttling due to the suppression of methanogenic activity. Oxygen-shock method and untreated consortia showed lower H2 production and higher SD among the variations studied, while, combined pretreated consortia resulted higher H2 production and lower SD. Lower ED observed with untreated consortia suggests the H+ reduction during methanogenesis rather than the inter-conversion of metabolites, which is presumed to be necessary for H2 production. ED observed with combined pretreated consortia corroborated well with the observed H2 production. Redox pairs were visualized on the voltammograms with almost all the experimental variations studied except untreated consortia. The potentials (E0) of redox pairs observed were corresponding to intracellular electron carriers viz., NAD+/NADH (E0 −0.32 V) and FAD+/FADH2 (E0 −0.24 V).  相似文献   

6.
Single chamber mediatorless microbial fuel cell (MFC; non-catalyzed graphite electrodes; open air cathode) behaviour was evaluated under different pH microenvironments [acidophilic (pH 6), neutral (pH 7) and alkaline (pH 8)] during chemical wastewater treatment employing anaerobic mixed consortia as anodic biocatalyst at room temperature (29 ± 2 °C). The performance was found to depend on the feed pH used. Higher current density was observed at acidophilic conditions [pH 6; 186.34 mA/m2; 100 Ω] compared to neutral [pH 7; 146.00 mA/m2; 100 Ω] and alkaline [pH 8; 135.23 mA/m2; 100 Ω]. On the contrary, substrate degradation was found to be effective at neutral pH conditions (ξCOD – 58.98%; SDR – 0.67 kg COD/m3-day) followed by alkaline (ξCOD – 55.76%; SDR – 0.62 kg COD/m3-day) and acidophilic (ξCOD of 47.80%; SDR 0.58 kg COD/m3-day) conditions studied. However, relatively higher specific power yield was observed at acidophilic microenvironment (46 mW/kg CODR) compared to neutral (35 mW/kg CODR) and alkaline (34 mW/kg CODR) conditions. The behaviour of the MFC was also evaluated employing electron discharge, cyclic voltammetry, cell potentials, Coulombic efficiency and sustainable power analysis. Acidophilic operation showed higher Coulombic efficiency and effective electron discharge at relatively higher resistance compared to neutral and alkaline conditions studied.  相似文献   

7.
The feasibility of utilizing effluents generated from acidogenic [producing biohydrogen (H2)] and methanogenic [producing methane] processes was studied for additional H2 production by terminally integrating with photo-biological process employing enriched mixed culture. Experimental data has depicted enhanced process efficiency with respect to additional H2 production and substrate degradation through photo-biological process. However, the efficiency was found to depend on the process used in the first stage along with nature and composition of the substrate. Acidogenic process in the first stage had more positive influence on photo-biological H2 production [synthetic wastewater – 14.40 mol/Kg CODR and 15.16 mol/Kg CODR (with vitamins); dairy wastewater – 13.29 mol/Kg CODR and 13.70 mol/Kg CODR (with vitamins)] over the corresponding methanogenic process. Effluent generated from acidogenic treatment of dairy wastewater yielded high substrate degradation rate (SDR) [1.20 Kg COD/m3 day and 1.34 Kg COD/m3 day (vitamins)] followed by synthetic wastewater [0.92 Kg COD/m3 day and 1.05 Kg COD/m3 day (vitamins)]. Among the studied experimental variations chemical wastewater evidenced poor H2 production and SDR. Vitamin solution showed positive influence on both H2 production and wastewater treatment irrespective of the experimental variations studied.  相似文献   

8.
The present study aimed to evaluate the hydrogen production of a microbial consortium using different concentrations of sugarcane vinasse (2–12 g COD L−1) at 37 °C and 55 °C. In mesophilic tests, the increase in vinasse concentration did not significantly impact the hydrogen yield (HY) (from 1.72 to 2.23 mmol H2 g−1 CODinfluent) but had a positive effect on the hydrogen production potential (P) and hydrogen production rate (Rm). On the other hand, the increase in the substrate concentration caused a drop in HY from 2.31 to 0.44 mmol H2 g−1 CODinfluent in the tests performed at 55 °C with vinasse concentrations from 2 to 12 g COD L−1. The mesophilic community was composed of different species within the Clostridium genus, and the thermophilic community was dominated by organisms affiliated with the Thermoanaerobacter genus. Not all isolates affiliated with the Clostridium genus contributed to a high HY, as the homoacetogenic pathway can occur.  相似文献   

9.
Adaptation of acidogenic sequencing batch biofilm reactor (AcSBBR) to higher loading conditions of vegetable waste extract was studied during biohydrogen production at pH 6.0 under ambient conditions. H2 production rate (HPR) and cumulative H2 production (CHP) were found to improve with increase in organic load from 4.50 to 26.44 kg COD/m3 and later at 35.25 kg COD/m3 stabilization was observed. Acid metabolic intermediates production tends to lower the system pH which limits the substrate degradation and H2 production at higher loading conditions. To overcome these limitations, redox controlled strategy (pH 7.0) was applied by integrating another AcSBBR. Upon redox controlled integration, CHP and substrate degradation were found to improve by 42.81% and 36.82% respectively. This approach helped to maintain the favorable redox microenvironment for fermentation at higher VFA concentrations. This process integration methodology will help to overcome some persistent limitation observed during biohydrogen production and make the process sustainable especially with high strength waste/wastewaters.  相似文献   

10.
Fermentative hydrogen (H2) production process in concurrence with feeding pH [aciodophilic (pH 6.0) and neutral (pH 7.0)] and reactor operation mode (continuous and fed-batch) was evaluated in a biofilm configured reactor [upflow mode; retention time, 24 h; operating temperature, 28 ± 2 °C; organic loading rate, 3.4 kg COD/m3 day] using anaerobic mixed consortia. Acidophilic pH showed relatively effective performance with respect to H2 production compared to neutral operation. Neutral pH illustrated effective substrate removal efficiency over the corresponding acidophilic operation. Fed-batch mode of operation with acidophilic pH showed highest H2 production among the studied experimental variations. The pattern of soluble metabolites distribution showed the persistence of acid-forming metabolic flow associated with acidogenesis which may be considered as optimum microenvironment for effective H2 production. Bio-electrochemical behavior of mixed anaerobic consortia (whole cell) during H2 production process was evaluated employing cyclic voltammetry (CV) in electrochemical cell [platinum as working electrode; Ag/AgCl as reference electrode; graphite rod as counter electrode; wastewater as electrolyte] to gain insight into the possible mechanism based on intracellular electron transfer involved in the fermentative metabolic process. Voltammogram profiles visualized well defined redox pairs in forward and reverse scans at both pH conditions and the signals corresponded to intracellular electron carrier, NADH/NAD+ (E0′, −0.32 V). Relatively higher energy output was observed in acidophilic operation which might be attributed to the possibility of efficient proton (H+) transfer between metabolic intermediates.  相似文献   

11.
A constructed microbial consortium was formulated from three facultative H2-producing anaerobic bacteria, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1. This consortium was tested as the seed culture for H2 production. In the initial studies with defined medium (MYG), E. cloacae produced more H2 than the other two strains and it also was found to be the dominant member when consortium was used. On the other hand, B. coagulans as a pure culture gave better H2 yield (37.16 ml H2/g CODconsumed) than the other two strains using sewage sludge as substrate. The pretreatment of sludge included sterilization (15% v/v), dilution and supplementation with 0.5% w/v glucose, which was found to be essential to screen out the H2 consuming bacteria and ameliorate the H2 production. Considering (1:1:1) defined consortium as inoculum, COD reduction was higher and yield of H2 was recorded to be 41.23 ml H2/g CODreduced. Microbial profiling of the spent sludge showed that B. coagulans was the dominant member in the constructed consortium contributing towards H2 production. Increase in H2 yield indicated that in consortium, the substrate utilization was significantly higher. The H2 yield from pretreated sludge (35.54 ml H2/g sludge) was comparatively higher than that reported in literature (8.1–16.9 ml H2/g sludge). Employing formulated microbial consortium for biohydrogen production is a successful attempt to augment the H2 yield from sewage sludge.  相似文献   

12.
Distillery effluent poses severe environmental pollution problem mainly due to its high organic content. During alcohol fermentation, most of the essential macro- and micro-nutrients get utilized. Therefore, supplementation of these nutrients becomes imperative for the improvement of biohydrogen production. In the present study, starch based distillery effluent was used for dark fermentative hydrogen production using Enterobacter cloacae IIT-BT 08. Hence, this study was undertaken to evaluate the effect of supplementation of yeast extract, malt extract, Fe++, Cu++ and Mg++ on biohydrogen production. The interaction among supplements and their mutual effect on the hydrogen production was studied using five factor–five level central composite design). Optimum hydrogen yield of 7.4 mol H2/kg CODreduced was predicted by the model, which showed an excellent correlation with experimental hydrogen yield of 7.38 ± 0.24 mol H2/kg CODreduced. An average hydrogen production rate of 80 mL/L h was achieved after supplementation, having 2.2 times higher hydrogen yield as compared to non-supplemented distillery effluent.  相似文献   

13.
The basic aim of this study was to investigate the feasibility of bioaugmentation strategy in the process of enhancing biohydrogen (H2) production from chemical wastewater treatment (organic loading rate (OLR)—6.3 kg COD/m3-day) in anaerobic sequencing batch biofilm reactor (AnSBBR) operated at room temperature (28±228±2 °C) under acidophilic microenvironment (pH 6) with a total cycle period of 24 h. Parent augmented inoculum (kanamycin resistant) was acquired from an operating upflow anaerobic sludge blanket (UASB) reactor treating chemical wastewater and subjected to selective enrichment by applying repetitive/cyclic pre-treatment methods [altering between heat-shock treatment (100 °C; 2 h) and acid treatment (pH 3; 24 h)] to eliminate non-spore forming bacteria and to inhibit the growth of methanogenic bacteria (MB). Experimental data revealed the positive influence of bioaugmentation strategy on the overall H2 production. Specific H2 production almost doubled after augmentation from 0.297 to 0.483 mol H2/kg CODR-day. Chemical wastewater acted as primary carbon source in the metabolic reactions involving molecular H2 generation leading to substrate degradation. The augmented culture persisted in the system till the termination of the experiments. The survival and retention of the augmented inoculum and its positive effect on process enhancement may be attributed to the adopted reactor configuration and operating conditions. Scanning electron microscope (SEM) images documented the selective enrichment of morphologically similar group of bacteria capable of producing H2 under acidophilic conditions in anaerobic microenvironment. This depicted work corroborated successful application of bioaugmentation strategy to improve H2 production rate from anaerobic chemical wastewater treatment.  相似文献   

14.
The influence of organic loading rates (OLRs) on the performance of fermentative hydrogen-producing bioreactors operating in continuous stirred tank reactor (CSTR) and membrane bioreactor (MBR) modes was examined. Five OLRs were examined, ranging from 4.0 to 30 g COD L?1 d?1, with influent glucose concentrations ranging from 1.3 to 10 g COD L?1. At OLRs up to 13 g COD L?1 d?1, all influent glucose was utilized and the H2 yield was not significantly influenced by OLR, although the yield in the CSTR mode was significantly higher than that in the MBR mode, 1.25 versus 0.97 mol H2 (mol Gluc. Conv.)?1, respectively. At an OLR of 30 g COD L?1 d?1, both reactor modes were overloaded with respect to glucose utilization and also had significantly higher H2 yields of 1.77 and 1.49 mol H2 (mol Gluc. Conv.)?1 for the CSTR and MBR modes, respectively, versus the underloaded operation. At the intermediate OLR of 22 g COD L?1 d?1, the H2 yield was maximized at 1.78 mol H2 (mol Gluc. Conv.)?1 for both the CSTR and MBR operation. Overall H2 production was 50% higher in the MBR mode, 0.78 versus 0.51 moles d?1, because the CSTR mode was overloaded with respect to glucose utilization at this OLR. These results suggest that an optimum OLR that maximizes H2 yield and H2 production may be near the OLR that causes overload with respect to substrate utilization. Additionally, while the CSTR mode is easier to operate and provides higher H2 yields at underloaded and overloaded OLRs, the MBR mode may be preferable when operating near the optimum OLR.  相似文献   

15.
We evaluated the production of bioH2 from Cassava Processing Wastewater (CPW) using three microbial consortia (Vac, Esg, and Lod) from different Brazilian environments. These consortia consisted of bacteria of the genera Clostridium, Sporanaerobacter, Coprococcus, Enterococcus, and others. The CPW was supplemented with nitrogen and used raw or hydrolyzed and sterilized or not. Four independent variables were optimized (Box-Behnken design): pH, temperature, C/N ratio, and inoculum ratio. Three quadratic models were obtained and explain production of bioH2 (R2 of 0.93, 0.87 and 0.82 for the consortia Vac, Esg and Lod, respectively). The quadratic effects were the most significant in comparison to linear effects and interactions. The optimal conditions were: pH: 5.5–7.0; temperature 37-39 °C; inoculum ratio 15%, and C/N ratio 5-3,5. After 48 h, the maximum yields of hydrogen obtained with hydrolyzed and sterilized CPW were 1.82, 1.7 and 1.68 mols of H2/mol of maltose for Lod, Esg and Vac, respectively. While, for the only sterilized substrate the yields are in the range 1.33–1.54 mol H2/mol maltose.  相似文献   

16.
Influence of reactor configuration [biofilm/suspended growth] on fermentative hydrogen (H2) production and substrate degradation was evaluated employing anaerobic mixed consortia. Reactors were operated at acidophilic (pH 6.0) condition employing designed synthetic wastewater as substrate at an organic loading rate of 3.4 Kg COD/m3-day with a retention time of 24 h at 28 ± 2 °C. Experimental data enumerated the influence of reactor configuration on both H2 production and wastewater treatment. Biofilm reactor (28.98 mmol H2/day; 1.25 Kg COD/m3-day) showed relatively efficient performance over the corresponding suspended growth configuration (20.93 mmol H2/day; 1.08 Kg COD/m3-day). Specific H2 yields of 6.96 mmol H2/g-CODL-day (19.32 mmol H2/g-CODR-day) and 5.03 mmol H2/g-CODL-day (16.10 mmol H2/g-CODR-day) were observed during stabilized phase of operation of biofilm and suspended growth reactors respectively. Higher concentration of VFA generation was observed in the biofilm reactor. Both the configurations recorded higher acetate concentration over other soluble metabolites indicating the dominance of acid-forming metabolic pathway during the H2 production process.  相似文献   

17.
An integrated biorefinery approach utilizing deoiled algal cake (after lipid extraction) as potential feed-stock for biohydrogen (H2) production using selectively enriched acidogenic consortia as biocatalyst was evaluated. Algae pretreated extract (AP-E) documented maximum H2 production rate (HPR), cumulative H2 production (CHP) and specific H2 yield (SHY) with higher substrate degradation (65%) in terms of COD removal efficiency than other conditions, which is a good sign for waste remediation. Along with the biohydrogen production and substrate removal the consortia also produced good amount of volatile fatty acids (VFA). VFA production in fermentation media resulted in reactor pH drop. The study depicted the feasible use of deoiled algal biomass as feed-stock for H2 production in the framework of biorefinery.  相似文献   

18.
Enhancement of biological H2 production efficiency with pre-ozonation process of palm oil mill effluent (POME) prior to thermophilic dark fermentation (55 °C) was investigated. H2 fermentation experiments were conducted using varying concentrations of raw and ozonated POME. Results revealed that H2 can be produced from both raw and ozonated POME under thermophilic fermentation. Maximum H2 production yield of 77 mL.g−1CODremoved was obtained from ozonated POME, which was higher than that of 51 mL·g−1 CODremoved obtained from raw POME at the highest concentration of 35,000 mg COD.L−1. Meanwhile, the specific H2 production rate (R'max) of 1.9 and 1.5 mL·h−1·g−1 TVS were observed in raw and ozonated POME at the concentration of 25,000 mg COD.L−1, respectively. The main metabolic products during POME fermentation were acetic and butyric acids and trace amount of valeric acid. Propionic acid and ethanol have contributed, which could be reduced H2 production in all batch experiments for both POME. The highest efficiency of total and soluble COD removal of 24 and 25% was obtained from the raw POME, and those of 19 and 25% was obtained from the ozonated POME. The present study demonstrates that the POME loading was greatly influenced on the H2 production yields and rates. The comparative results showed that the ozonated POME gave higher H2 yields than the raw POME. Thus, demonstrating that the ozonation process significantly improved the POME biodegradability, which is able to enhance H2 production yields. However, the ozone pre-treatment was not improved in the specific H2 production rates.  相似文献   

19.
Reversible solid oxide fuel cells (R-SOFCs) are regarded as a promising solution to the discontinuity in electric energy, since they can generate electric powder as solid oxide fuel cells (SOFCs) at the time of electricity shortage, and store the electrical power as solid oxide electrolysis cells (SOECs) at the time of electricity over-plus. In this work, R-SOFCs with thin proton conducting electrolyte films of BaCe0.5Zr0.3Y0.2O3−δ were fabricated and their electro-performance was characterized with various reacting atmospheres. At 700 °C, the charging current (in SOFC mode) is 251 mA cm−2 at 0.7 V, and the electrolysis current densities (in SOEC mode) reaches −830 mA cm−2 at 1.5 V with 50% H2O-air and H2 as reacting gases, respectively. Their electrode performance was investigated by impedance spectra in discharging mode (SOFC mode), electrolysis mode (SOEC mode) and open circuit mode (OCV mode). The results show that impedance spectra have different shapes in all the three modes, implying different rate-limiting steps. In SOFC mode, the high frequency resistance (RH) is 0.07 Ωcm2 and low frequency resistances (RL) are 0.37 Ωcm2. While in SOEC mode, RH is 0.15 Ωcm2, twice of that in SOFC mode, and RL is only 0.07 Ωcm2, about 19% of that in SOFC mode. Moreover, the spectra under OCV conditions seems like a combination of those in SOEC mode and SOFC mode, since that RH in OCV mode is about 0.13 Ωcm2, close to RH in SOEC mode, while RL in OCV mode is 0.39 Ωcm2, close to RL in SOFC mode. The elementary steps for SOEC with proton conducting electrolyte were proposed to account for this phenomenon.  相似文献   

20.
The thermophilic anaerobic digestion of cheese whey was evaluated using a single and two stage configuration (H2–CH4) in a sequencing batch reactor (SBR). The single stage process presented stable performance with a specific methane production (SMP) of 314.5 ± 6.6 L CH4 kg−1 CODfeed (Chemical oxygen demand) at a hydraulic retention time (HRT) of 8.3 days. On the contrary, the two stage process presented instabilities at an HRT of 12.5 days with acid accumulation being observed in the methanogenesis phase at an earlier stage. This behaviour was indicative of process inhibition by high concentrations of sodium and potassium ions as a consequence of pH control during the H2 producing stage. In spite of this phenomenon, this condition attained the highest SMP value (340.4 ± 40 L CH4 kg−1 CODfeed). The performance of the anaerobic digestion process was also analysed by means of Fourier transform infrared (FTIR) and 1H nuclear magnetic resonance (1H NMR) spectroscopy. The two stage process showed higher content in triacylglycerol groups probably associated with changes in archaeal lipid complexes as a microbial response to a higher salinity environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号