首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A hydrogen producer was successfully isolated from anaerobic digested palm oil mill effluent (POME) sludge. The strain, designated as Clostridium butyricum EB6, efficiently produced hydrogen concurrently with cell growth. A controlled study was done on a synthetic medium at an initial pH value of 6.0 with 10 g/L glucose with the maximum hydrogen production at 948 mL H2/L-medium and the volumetric hydrogen production rate at 172 mL H2/L-medium/h. The supplementation of yeast extract was shown to have a significant effect with a maximum hydrogen production of 992 mL H2/L-medium at 4 g/L of yeast extract added. The effect of pH on hydrogen production from POME was investigated. Experimental results showed that the optimum hydrogen production ability occurred at pH 5.5. The maximum hydrogen production and maximum volumetric hydrogen production rate were at 3195 mL H2/L-medium and 1034 mL H2/L-medium/h, respectively. The hydrogen content in the biogas produced was in the range of 60–70%.  相似文献   

2.
Ground wheat solution was used for bio-hydrogen production by dark fermentation using heat-treated anaerobic sludge in a completely mixed fermenter operating in fed-batch mode. The feed wheat powder (WP) solution was fed to the anaerobic fermenter with a constant flow rate of 8.33 mL h−1 (200 mL d−1). Cumulative hydrogen production, starch utilization and hydrogen yields were determined at three different WP loading rates corresponding to the feed WP concentrations of 10, 20 and 30 g L−1. The residual starch (substrate) concentration in the fermenter decreased with operation time while starch consumption was increasing. The highest cumulative hydrogen production (3600 mL), hydrogen yield (465 mL H2 g−1 starch or 3.1 mol H2 mol−1 glucose) and hydrogen production rate (864 mL H2 d−1) were obtained after 4 days of fed-batch operation with the 20 g L−1 feed WP concentration corresponding to a WP loading rate of 4 g WP d−1. Low feed WP concentrations (10 g L−1) resulted in low hydrogen yields and rates due to substrate limitations. High feed WP concentrations (30 g L−1) resulted in the formation of volatile fatty acids (VFAs) in high concentrations causing inhibition on the rate and yield of hydrogen production.  相似文献   

3.
The feasibility of producing hydrogen and methane via a two-stage fermentation of tequila vinasses was evaluated in sequencing batch (SBR) and up-flow anaerobic sludge blanket (UASB) reactors. Different vinasses concentrations ranging from 500 mg COD/L to 16 g COD/L were studied in SBR by using thermally pre-treated anaerobic sludge as inoculum for hydrogen production. Peak volumetric hydrogen production rate and specific hydrogen production were attained as 57.4 ± 4.0 mL H2/L-h and 918 ± 63 mL H2/gVSS-d, at the substrate concentration of 16 g COD/L and 6 h of hydraulic retention time (HRT). Increasing substrate concentration has no effect on the specific hydrogen production rate. The fermentation effluent was used for methane production in an UASB reactor. The higher methane composition in the biogas was achieved as 68% at an influent concentration of 1636 mg COD/L. Peak methane volumetric, specific production rates and yield were attained as 11.7 ± 0.7 mL CH4/L-h, 7.2 ± 0.4 mL CH4/g COD-h and 257.9 ± 13.8 mL CH4/g COD at 24 h-HRT and a substrate concentration of 1636 mg COD/L. An overall organic matter removal (SBR + UASB) in this two-stage process of 73–75% was achieved.  相似文献   

4.
The combination of dark and photo fermentation was studied with cassava starch as the substrate to increase the hydrogen yield and alleviate the environmental pollution. The different raw cassava starch concentrations of 10–25 g/l give different hydrogen yields in the dark fermentation inoculated with the mixed hydrogen-producing bacteria derived from the preheated activated sludge. The maximum hydrogen yield (HY) of 240.4 ml H2/g starch is obtained at the starch concentration of 10 g/l and the maximum hydrogen production rate (HPR) of 84.4 ml H2/l/h is obtained at the starch concentration of 25 g/l. When the cassava starch, which is gelatinized by heating or hydrolyzed with α-amylase and glucoamylase, is used as the substrate to produce hydrogen, the maximum HY respectively increases to 258.5 and 276.1 ml H2/g starch, and the maximum HPR respectively increases to 172 and 262.4 ml H2/l/h. Meanwhile, the lag time (λ) for hydrogen production decreases from 11 h to 8 h and 5 h respectively, and the fermentation duration decreases from 75–110 h to 44–68 h. The metabolite byproducts in the dark fermentation, which are mainly acetate and butyrate, are reused as the substrates in the photo fermentation inoculated with the Rhodopseudomonas palustris bacteria. The maximum HY and HPR are respectively 131.9 ml H2/g starch and 16.4 ml H2/l/h in the photo fermentation, and the highest utilization ratios of acetate and butyrate are respectively 89.3% and 98.5%. The maximum HY dramatically increases from 240.4 ml H2/g starch only in the dark fermentation to 402.3 ml H2/g starch in the combined dark and photo fermentation, while the energy conversion efficiency increases from 17.5–18.6% to 26.4–27.1% if only the heat value of cassava starch is considered as the input energy. When the input light energy in the photo fermentation is also taken into account, the whole energy conversion efficiency is 4.46–6.04%.  相似文献   

5.
Several studies have reported on the effects of inoculums source and pretreatment on biological hydrogen production. However, there have been few studies on continuous reactors. This paper investigated the influence of different seed sludge sources and pretreatment methods on biohydrogen production in up-flow anaerobic fixed-bed reactors fed with sucrose. The following inoculum sources were included in the study: (1) anaerobic sludge from an up-flow anaerobic sludge blanket (UASB) reactor used to treat poultry slaughterhouse wastewater (Sl), (2) anaerobic sludge from a UASB reactor used to treat swine wastewater (Sw) and (3) autofermentation (A). Heat (He) and acid (Ac) shock were used to increase hydrogen production and suppress hydrogen consumption. The average hydrogen yields (HY) in the experiment were 2.1 (A), 2.0 (SlHe), 2.0 (SlAc), 1.0 (Sl), 1.0 (SwAc), 0.7 (SwHe) and 0.7 (Sw) mol H2 mol−1 sucrose. Although heat shock produced the maximum HY value (SlHe), acid pretreatment (SlAc) resulted in more stable hydrogen production with the largest average value, which could be an advantage of using pH shock. The autofermentation process presented HY values similar to those produced with SlAc and SlHe, making it a suitable seed sludge for biohydrogen production because pretreatment was not required.  相似文献   

6.
Hydrogen gas production with simultaneous COD removal was realized by application of DC voltages (0.5-5.0 V) to landfill leachate. The rate and the yield of hydrogen gas production were investigated at different DC voltages by using aluminum electrodes and DC power supply. The highest cumulative hydrogen production (5000 mL), hydrogen yield (2400 mL H2 g−1 COD), daily hydrogen gas formation (1277 mL d−1), and percent hydrogen (99%) in the gas phase were obtained with 4 V DC voltage. Energy conversion efficiency (H2 energy/electrical energy) reached the highest level (80.6%) with 1 V DC voltage. Hydrogen gas production was mainly realized by electrohydrolysis of leachate organics due to negligible H2 gas production in water and leachate control experiments. The highest COD removal (77%) was also obtained with 4 V DC voltage. Electrohydrolysis of landfill leachate was proven to be an effective method for hydrogen gas production with simultaneous COD removal.  相似文献   

7.
A series of batch experiments were conducted to investigate the effects of pH and glucose concentrations on biological hydrogen production by using the natural sludge obtained from the bed of a local river as inoculant. Batch experiments numbered series I and II were designed at an initial and constant pH of 5.0–7.0 with 1.0 increment and four different glucose concentrations (5.0, 7.5, 10 and 20 g glucose/L). The results showed that the optimal condition for anaerobic fermentative hydrogen production is 7.5 g glucose/L and constant pH 6.0 with a maximum H2 production rate of 0.22 mol H2 mol−1 glucose h−1, a cumulative H2 yield of 1.83 mol H2 mol−1 glucose and a H2 percentage of 63 in biogas.  相似文献   

8.
Batch and continuous tests were conducted to evaluate fermentative hydrogen production from starch (at a concentration of chemical oxygen demand (COD) 20 g/L) at 35 °C by a natural mixed culture of paper mill wastewater treatment sludge. The optimal initial cultivation pH (tested range 5–7) and substrate concentration (tested range 5–60-gCOD/L) were evaluated by batch reactors while the effects of hydraulic retention time (HRT) on hydrogen production, as expressed by hydrogen yield (HY) and hydrogen production rate (HPR), were evaluated by continuous tests. The experimental results indicate that the initial cultivation pH markedly affected HY, maximum HPR, liquid fermentation product concentration and distribution, butyrate/acetate concentration ratio and metabolic pathway. The optimal initial cultivation pH was 5.5 with peak values of HY 1.1 mol-H2/mol-hexose maximum HPR 10.4 mmol-H2/L/h and butyrate concentration 7700 mg-COD/L. In continuous hydrogen fermentation, the optimal HRT was 4 h with peak HY of 1.5 mol-H2/mol-hexose, peak HPR of 450 mmol-H2/L/d and lowest butyrate concentration of 3000 mg-COD/L. The HPR obtained was 280% higher than reported values. A shift in dominant hydrogen-producing microbial population along with HRT variation was observed with Clostridium butyricum, C. pasteurianum, Klebshilla pneumoniae, Streptococcus sp., and Pseudomonas sp. being present at efficient hydrogen production at the HRTs of 4–6 h. Strategies based on the experimental results for optimal hydrogen production from starch are proposed.  相似文献   

9.
Biohydrogen production from the anaerobic digestion of specified risk materials (SRM) co-digested with cattle manure was assessed in a 3 × 5 factorial design. Total organic loading rates (OLR) of 10, 20, and 40 g L−1 volatile solids (VS) were tested using manure:SRM (wt/wt) mixtures of 100:0 (control), 90:10, 80:20, 60:40, and 50:50 using five 2 L continuously stirred biodigesters operating at 55 °C. Gas samples were taken daily to determine hydrogen production, and slurry samples were analyzed daily for volatile fatty acid (VFA) concentration, total ammonia nitrogen (TAN), and VS degradation. Hydrogen production (mL g−1 VS fed) varied quadratically according to OLR (P < 0.01), with maximum production at OLR20, while production decreased linearly (P < 0.0001) as SRM concentration increased. Reduced hydrogen production associated with SRM inclusion at >10% VS may be attributed to a rapid increase in TAN (r = −0.55) or other inhibitors such as long chain fatty acids. Reduced hydrogen production (P < 0.01) at OLR40 versus OLR20 may be related to increased rate of VFA accumulation and final VFA concentration (P < 0.001), as well as inhibition due to hydrogen accumulation (P < 0.001). Biohydrogen production from SRM co-digested with cattle manure may not be feasible on an industrial scale due to reduced hydrogen production with increasing levels of SRM.  相似文献   

10.
Three different pre-treatment methods were applied on two different anaerobic sludge cultures and their mixtures in order to investigate the effects of pre-treatment methods on bio-hydrogen production from dark fermentation of waste ground wheat solution. Repeated heat, chloroform and combinations of heat and chloroform pre-treatment methods were applied to anaerobic sludges from different sources. Repeated heat treatment (2 × 5 h) was found to be more effective in selecting hydrogen producing bacteria compared to the other treatment methods tested on the basis of cumulative hydrogen production. The highest hydrogen formation (652 ml) and specific hydrogen production rate (SHPR = 25.7 ml H2 g−1 cells h−1) were obtained with the anaerobic sludge pre-treated by repeated boiling. Both the type of anaerobic sludge and the pre-treatment method had considerable effects on bio-hydrogen production from wheat powder solution (WPS) by dark fermentation.  相似文献   

11.
Waste activated sludge from a wastewater treatment plant is rich in polysaccharides and proteins and thus is a potential substrate for producing hydrogen. In this study, the hydrogen yield could be largely enhanced by using filtrates of waste sludge. The hydrogen yield was effectively increased from 1.34 mg H2/gTCOD (waste sludge) to 4.44 mg H2/gTCOD (filtrate). The changes of nutrients such as SCOD, protein and carbohydrate in sludge and its filtrate during fermentation have obviously diversity. It implied that the nutrients could be further released from the solid phase of the sludge during fermentation. In addition, the fermentation of the sludge was advantageous for releasing nutrients, but the H2 production might be lower at high substrate concentrations as a result of the inhibition products formed during hydrogen production. Therefore, the solid phase of waste sludge could not be utilized by the anaerobes as nutrient and it might absorb certain products, release toxic metals or deliver toxic substances during fermentation. The changes of pH indicated that conditions were favorable for hydrogen production from the filtrate. The 16S rRNA gene sequence, phylogenetic and biochemical character analyses demonstrated that strain GZ1 was a new strain of Pseudomonas and suitable for hydrogen production.  相似文献   

12.
Batch tests were conducted to evaluate the enhancement of hydrogen/ethanol (EtOH) productivity using cow dung microflora to ferment α-cellulose and saccharification products (glucose and xylose). Hydrogen/ethanol production was evaluated based on hydrogen/ethanol yields (HY/EY) under 55 °C at various initial pH conditions (5.5–9.0). Our test results indicate that cow dung sludge is a good mixed natural-microflora seed source for producing biohydrogen/ethanol from cellulose and xylose. The heat-pretreatment, commonly used to produce hydrogen more efficiently from hexose, applied to mixed anaerobic cultures did not help cow dung culture convert cellulose and xylose into hydrogen/ethanol. Instead of heat-pretreatment, the mixed culture received enrichments cultivated at 55 °C for 4 days. Positive results were observed: hydrogen/ethanol production from fermenting cellulose and xylose was effectively enhanced at increases of 4.8 (ethanol) to 8 (hydrogen) and 2.4 (ethanol) to 15.6 (hydrogen) folds, respectively. In which, the ethanol concentration produced from xylose reached 4–4.4 g/L, an output comparable to that of using heat-treated sewage sludge and better than that (1.25–3 g/L) using pure cultures. Our test results show that for the enriched cultures the initial cultivation pH can affect hydrogen/ethanol production including HY, EY and liquid fermentation product concentration and distribution. These results were also concurred using a denaturing gradient gel electrophoresis analysis saying that both cultivation pH and substrate can affect the enriched cow dung culture microbial communities. The enriched cow dung culture had an optimal initial cultivation pH range of 7.6–8.0 with peak HY/EY values of 2.8 mmol-H2/g-cellulose, 5.8 mmol-EtOH/g-cellulose, 0.3 mol-H2/mol-xylose and 1 mol-EtOH/mol-xylose. However, a pH change of 0.5 units from the optimal values reduced hydrogen/ethanol production efficiency by 20%. Strategies based on the experimental results for optimal hydrogen/ethanol production from cellulose and xylose using cow dung microflora are proposed.  相似文献   

13.
The conversion of lipid-extracted microalgal biomass residues (LMBRs) into hydrogen plays the dual role in renewable energy production and sustainable development of microalgal biodiesel industry. An anaerobic fermentation process to covert LMBRs into hydrogen was investigated in this work. Using batch experiments, the effects of pretreatment of inoculum (by acid, base, heat, and chloroform, respectively), initial pH (5.0–7.0), inoculum concentrations at 0.59–2.94 g VSS/l (volatile suspended solids, VSS) and substrate concentrations at 4.5–45 g VS/l (volatile solids, VS) were investigated, respectively. The results showed that the most effective hydrogen production was obtained from fermentation of LMBRs with a concentration of 36 g VS/l at the initial pH 6.0–6.5 using the heat-treated anaerobic digested sludge as inoculum. Acetate, propionate and butyrate were the main fermentation byproducts in the conversion of LMBRs into hydrogen.  相似文献   

14.
The batch fermentations of two hyperthermophilic eubacteria Thermotoga maritima strain DSM 3109 and Thermotoga neapolitana strain DSM 4359 were carried out to optimize the hydrogen production. The simple and economical culture medium using cheap salts with strong buffering capacity was designed based on T. maritima basal medium (TMB). Both strains cultivated under strictly anaerobic conditions showed the best growth at temperature of 75–80 °C and pH of 6.5–7.0. The maximum cell growth of 3.14 g DCW/L and hydrogen production of 342 mL H2 gas/L were obtained, respectively, in the modified TB medium containing 7.5 g/L of glucose and 4 g/L of yeast extract. Hydrogen accumulation in the headspace was more than 30% of the gaseous phase. Cells were also cultivated in cellulose-containing medium to test the feasibility of hydrogen production.  相似文献   

15.
Ultrasonication was evaluated as a pretreatment for biological hydrogen production from glucose in batch studies, in comparison with heat-shock pretreatment, acid pretreatment, and base pretreatment. The optimized sonication energy for hydrogen production using anaerobic digester sludge was 79 kJ/gTS. Sonication with temperature control (less than 30 °C) increased volumetric hydrogen production by 120% over the untreated sludge, and by 40% over the heat-shock and acid pretreated sludge, with a marginal (∼10%) increase in hydrogen production rate. Upon comparing the molar hydrogen yield in sonicated sludge with and without temperature control, the deleterious effect of heat on some hydrogen producers as reflected by a 30% decrease in yield to 1.03 mol H2/mol glucose is evident. Sonication with temperature control affected a 45% increase in molar hydrogen yield to 1.55 mol H2/mol glucose over heat-shock pretreatment at 70 °C for 30 min and acidification to pH 3.0 for 24 h at 4 °C. Sonication with temperature control produced a biomass yield of 0.13 g VSS/g COD, as compared to 0.24 g VSS/g COD for the untreated sludge. The hydrogen yield increased linearly with the molar acetate to butyrate ratio and decreased linearly with the biomass yield.  相似文献   

16.
Thermophilic hydrogen production from xylan by Thermoanaerobacterium thermosaccharolyticum KKU-ED1 isolated from elephant dung was investigated using batch fermentation. The optimum conditions for hydrogen production from xylan by the strain KKU-ED1 were an initial pH of 7.0, temperature of 55 °C and xylan concentration of 15 g/L. Under the optimum conditions, the hydrogen yield (HY), hydrogen production rate (HPR) and xylanase activity were 120.05 ± 15.07 mL H2/g xylan, 11.53 ± 0.19 mL H2/L h and 0.41 units/mL, respectively. The optimum conditions were then used to produce hydrogen from 62.5 g/L sugarcane bagasse (SCB) (equivalent to 15 g/L xylan) in which the HY and HPR of 1.39 ± 0.10 mL H2/g SCB (5.77 ± 0.41 mL H2/g xylan) and 0.66 ± 0.04 mL H2/L h, respectively, were achieved. In comparison to the other strains, the HY of the strain KKU-ED1 (120.05 ± 15.07 mL H2/g xylan) was close to that of Clostridium sp. strain X53 (125.40 mL H2/g xylan) and Clostridium butyricum CGS5 (90.70 mL H2/g xylan hydrolysate).  相似文献   

17.
Polyethylene glycol (PEG) gel was used to immobilize hydrogen producing Clostridium LS2 bacteria for hydrogen production in an upflow anaerobic sludge blanket (UASB) reactor. The UASB reactor with a PEG-immobilized cell packing ratio of 10% weight to volume ratio (w/v) was optimal for dark hydrogen production. The performance of the UASB reactor fed with palm oil mill effluent (POME) as a carbon source was examined under various hydraulic retention time (HRT) and POME concentration. The best volumetric hydrogen production rate of 365 mL H2/L/h (or 16.2 mmol/L/h) with a hydrogen yield of 0.38 L H2/g CODadded was obtained at POME concentration of 30 g COD/L and HRT of 16 h. The average hydrogen content of biogas and COD reduction were 68% and 65%, respectively. The primary soluble metabolites were butyric acid and acetic acid with smaller quantities of other volatile fatty acid and alcohols formed during hydrogen fermentation. More importantly, the feasibility of PEG-immobilized cell UASB reactor for the enhancement of the dark-hydrogen production and treatment of wastewater is demonstrated.  相似文献   

18.
The biological hydrogen (bio-H2) production from apple pomace (AP) by fermentation using natural mixed microorganisms in batch process was studied under various experimental conditions. The river sludge was used as a seed after being boiled for 15 min. The results show that the optimal pretreatment for AP was to soak it in the ammonia liquor of 6% for 24 h at room temperature. An optimal fermentation condition for bio-H2 production was proposed that the pretreated AP at 37 °C, the initial pH of 7.0 and the fermentation concentration of 15 g/l could produce a maximum cumulative H2 yield (CHYm) of 101.08 ml/g total solid (TS) with an average H2 production rate (AHPR) of 8.08 ml/g TS/h. During the conversion of AP into H2, acetic acid, ethanol, propionic acid and butyric acid were main liquid end-products.  相似文献   

19.
The fermentation of glucose, cheese whey and the mixture of glucose and cheese whey were evaluated in this study from two inocula sources (sludge from a UASB reactor for swine wastewater treatment and poultry slaughterhouse) for hydrogen production in continuous anaerobic fluidized bed reactors (AFBR). For all fermentations, a hydraulic retention time (HRT) of 6 h and a substrate concentration of 5 g COD L−1 were used. In glucose fermentation, the maximum hydrogen yield (HY) was 1.37 mmol H2 g−1 COD. The co-fermentation of the cheese whey and glucose mixture was favorable for the concomitant production of hydrogen and ethanol, with yields of up to 1.7 mmol H2 g−1 COD and 3.45 mol EtOH g−1 COD in AFBR2. The utilization of cheese whey as a sole substrate resulted in an HY of 1.9 mmol H2 g−1 COD. Throughout the study, ethanol fermentation was evident.  相似文献   

20.
Catalytic decomposition of methane produces COX-free hydrogen, which is necessary for PEM fuel-cell applications. In this paper, hydrogen production by catalytic decomposition of methane at 550 °C over Ni on HY, USY, SiO2 and SBA-15 supports is examined at atmospheric pressure. The catalytic activities and the life times of the catalysts are evaluated and discussed. The relationships between catalyst performance and characterization of the fresh and used catalysts are discussed with the results obtained from SEM, XRD, TPR, solid acidity and the measured carbon contents generated of the used samples along with their H2 production rates. Among all the catalysts tested, Ni supported on HY zeolite showed a higher activity of 955 mol H2 (mol Ni)−1 and a longevity of 720 min at 550 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号