首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
To produce high-concentration syngas (CO + H2) from biogas, the effect of pressurization on dry reforming of biogas (CH4/CO2 = 60%/40%) in kilohertz spark-discharge plasma was reported for the first time by elevating the pressure from 1 bar to 2 bar. It was found that elevating the pressure could not only increase the reactant conversions, but also reduce energy cost and increase fuel-production efficiency at the same specific energy input (SEI). In particular, pressurization exhibited a significantly positive effect on increasing CO2 conversion and decreasing energy cost for converting CO2. Syngas concentration as high as 83% (H2/CO = 1.4) was achieved with a ratio of the flow rates of product gas (dry basis) to feeding gas, 1.7, at 2 bar and SEI = 753 kJ/mol. The by-product, H2O, was produced with only about 5% of hydrogen-based selectivity in this work. At 2 bar, the effect of SEI was investigated by varying the power and flow rate, respectively. Compared with those at 1 bar, with the increase in SEI, reactants conversion increased fast, energy cost rose slowly and fuel-production efficiency decreased slowly at 2 bar.  相似文献   

2.
Ni/Co bimetallic catalysts supported by commercial γ-Al2O3 modified with La2O3 for biogas reforming were prepared by conventional incipient wetness impregnation. The catalysts were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), BET surface area and porosity analysis (BET), H2 temperature-programmed reduction (H2-TPR), transmission electron microscopy (TEM) and thermogravimetry coupled to differential scanning calorimetry (TG–DSC). XRD and XPS analysis revealed that a Ni/Co alloy was formed in the bimetallic catalysts. The Ni/Co ratio could be adjusted to improve pore textural properties, which enhanced the metal particle dispersion and resulted in smaller metal particle size, and thus increased the catalytic activity and resistance to carbon deposition. The activity and stability of the catalysts for biogas reforming was tested at 800 °C, ambient pressure, GHSV of 6000 ml gcat−1 h−1 and a CH4/CO2 molar ratio of 1 without dilute gas. Experimental results showed that the catalytic activity could be closely related to the Ni/Co ratio. The bimetallic catalyst 7Ni3Co/LaAl exhibited better catalytic and anti-coking performance due to smaller metal particles, higher metal dispersion, uniform pore distribution, surface enrichment of Co, as well as the synergetic effect between Ni and Co. During a 290 h stability test over the catalyst 7Ni3Co/LaAl, the average conversion of CH4 and CO2, selectivity to H2 and CO, and ratio of H2/CO were 93.7%, 94.0%, 94.9%, 97.8%, and 0.97, respectively. The average coking rate was 0.0946 mg gcat−1 h−1.  相似文献   

3.
A Ni based catalyst supported on a cordierite monolithic substrate was applied to the autothermal reforming (ATR) of biogas to produce hydrogen. When the feed rates of oxygen and steam were constant, the Steam/CH4 (S/CH4) and O2/CH4 ratios changed because of an increase or decrease in the methane concentration of the biogas. The concentration of methane in the biogas fluctuates roughly between 35% and 65% according to factors such as the properties or amount of the waste. Therefore, the effect of S/CH4 and O2/CH4 ratios on catalyst durability was confirmed by using actual biogas, which was produced by anaerobic fermentation of biomass at the biogasification bench-scale plant in Kyoto. Reforming reactions were carried out at ratios of S/CH4 = 0–4, O2/CH4 = 0.5 and at S/CH4 = 2, O2/CH4 = 0.6. The S/CH4 range of 0–2.0 and the O2/CH4 range of 0.5–0.6 had no effect on the catalyst durability and a S/CH4 ratio of more than 3.0 led to decreased catalytic performance.  相似文献   

4.
The dry and oxidative dry reforming of CH4 over alumina-supported Co–Ni catalysts were investigated over 72-h longevity experiments. The deactivation behaviour at low CO2:CH4 ratio (≤2) suggests that carbon deposition proceeds via a rapid dehydropolymerisation step resulting in the blockage of active sites and loss in CO2 consumption. In particular, at high temperatures of 923 K and 973 K, a ‘breakthrough’ point was observed in which deactivation that was previously slow suddenly accelerated, indicating rapid polymerisation of deposited carbon. Only with feed CO2:CH4 > 2 or with O2 co-feeding was coke-induced deactivation eliminated. In particular, O2 co-feeding gave improved carbon removal, product H2:CO ratios more suitable for downstream GTL processing and stable catalytic performance. Conversion-time data were adequately fitted to the generalised Levenspiel reaction-deactivation model. Activation energy estimate (66–129 kJ mol−1) was dependent on the CO2:CH4 ratio but representative of other hydrocarbon reforming reactions on Ni-based catalysts.  相似文献   

5.
The aim of this study is to investigate the thermodynamics of steam assisted, high-pressure conversions of model components of bio-oil – isopropyl alcohol, lactic acid and phenol – to synthesis gas (H2 + CO) and to understand the effects of process variables such as temperature and inlet steam-to-fuel ratio on the product distribution. For this purpose, thermodynamic analyses are performed at a pressure of 30 bar and at ranges of temperature and steam-to-fuel ratio of 600–1200 K and 4–9, respectively. The number of moles of each component in the product stream and the product composition at equilibrium are calculated via Gibbs free energy minimization technique. The resulting optimization problems are solved by using the Sequential quadratic programming method. The results showed that all of the model fuels reached near-complete conversions to H2, CO, CO2 and CH4 within the range of operating conditions. Temperature and steam-to-fuel ratio had positive effects in increasing hydrogen content of the product mixture at different magnitudes. Production of CO increased with temperature, but decreased at high steam-to-fuel ratios. Conversion of model fuels in excess of 1000 K favored molar H2/CO ratios around 2, the synthesis gas composition required for Fischer–Tropsch and methanol syntheses. It was also possible to adjust the H2/CO ratios and the amounts of CH4 and CO2 in synthesis gas by steam-to-fuel ratio, the value depending on temperature and the fuel type. Product distribution trends indicated the presence of water–gas shift and methanation equilibria as major side reactions running in parallel with the steam reforming of the model hydrocarbons.  相似文献   

6.
An experimental and theoretical study for the biogas steam reforming reaction over 5%Ru/Al2O3 catalyst have been performed. An apparatus was constructed for the conduction of the experiments, the core of which was a tube reactor, filled with the catalyst in form of pellets. The inlet gas mixture consisted of CH4 and CO2 in various composition ratios as a model biogas and steam. A theoretical model of the process was developed. The experimental reactor was modelled as an isothermal pseudo homogeneous fixed bed reactor. Internal and external transport phenomena were neglected and appropriate effectiveness factors were employed instead. A physical properties model was used for the calculation of the physicochemical properties of the real mixture. Five reactant species, CH4, CO2, H2O, CO and H2, were included in the model, whereas the feed consisted of the first three. Steam reforming and water gas shift were the main reactions. Experimental results and theoretical predictions match closely, stability of the catalyst was assured and an optimal operational window was identified, at GHSV = 10,000–20,000 h−1, T = 700–800 °C, CH4/CO2 = 1.0–1.5 and H2O/CH4 = 3.0–5.0.  相似文献   

7.
Ni-W/Al2O3 catalysts were synthesized, characterized and tested for the steam reforming of ethanol from 300 to 600 °C. Addition of Ni and W on the alumina, decreased the surface area and increased the pore volume of the mesoporous materials synthesized. The reaction products obtained were: H2, CO2, C2H4, CH4, CO2, CO and CH3CHO. A promoting effect of Ni-W was observed in the conversion of ethanol to H2 from 15 to 30 wt.% Ni and 1 wt.% W. The selectivity to H2 on the alumina with Ni-W, was between 66.53 and 68.53% at 550 °C, appearing some undesirable products, with low ratio of CO/CO2. Reaction was studied on a fixed bed reactor at atmospheric pressure with an ethanol/water molar ratio of 1:4, from 300 to 600 °C. The catalysts were characterized by the thermal gravimetric analysis (TGA)-Differential thermal analysis (DTA), N2 physisorption (BET and BJH methods), X-ray diffraction (XRD) and scanning electron microscopy (SEM), these techniques were used for characterization, before and after of the steam reforming.  相似文献   

8.
Autothermal reforming of methane includes steam reforming and partial oxidizing methane. Theoretically, the required endothermic heat of steam reforming of methane could be provided by adding oxygen to partially oxidize the methane. Therefore, combining the steam reforming of methane with partial oxidation may help in achieving a heat balance that can obtain better heat efficacy. Membrane reactors offer the possibility of overcoming the equilibrium conversion through selectively removing one of the products from the reaction zone. For instance, only can hydrogen products permeate through a palladium membrane, which shifts the equilibrium toward conversions that are higher than the thermodynamic equilibrium. In this study, autothermal reforming of methane was carried out in a traditional reactor and a Pd/Ag membrane reactor, which were packed with an appropriate amount of commercial Ni/MgO/Al2O3 catalyst. A power analyzer was employed to measure the power consumption and to check the autothermicity. The average dense Pd/Ag membrane thickness is 24.3 μm, which was coated on a porous stainless steel tube via the electroless palladium/silver plating procedure. The experimental operating conditions had temperatures that were between 350 °C and 470 °C, pressures that were between 3 atm and 7 atm, and O2/CH4 = 0–0.5. The effects of the operating conditions on methane conversion, permeance of hydrogen, H2/CO, selectivities of COx, amount of power supply, and the carbon deposition of the catalyst after the reaction is thoroughly discussed in this paper. The experimental results indicate that an optimum methane conversion of 95%, with a hydrogen production rate of 0.093 mol/m2. S, can be obtained from the autothermal reforming of methane at H2O/CH4 = 1.3 and O2/CH4 near 0.4, at which the reaction does not consume power, and the catalysts are not subject to any carbon deposition.  相似文献   

9.
Hydrogen production via steam reforming of methanol is carried out over Cu/(Ce,Gd)O2−x catalysts at 210–600 °C. The CO content in reformate is about 1% at 210–270 °C, which are the typical temperature for hydrogen production via steam reforming of methanol. Largest H2 yield and CO2 selectivity and smallest CO content are obtained at 240 °C. The formation rate of CO increases with increasing temperature. The average formation rate of CO becomes larger than that of CO2 at about 450 °C. The H2 yield, the CO2 selectivity and the CO content become constant at about 550 °C. At 240 °C, the smallest CO content is obtained with a catalyst weight of 0.5 g and a Cu content of 3 wt%. The H2 yield, defined as H2/(CO + CO2) in formation rates, at 240 °C is always 3 and not affected by the variations of either the catalyst weight or the Cu content.  相似文献   

10.
Thermodynamic analysis of dimethyl ether steam reforming (DME SR) was investigated for carbon formation boundary, DME conversion, and hydrogen yield for fuel cell application. The equilibrium calculation employing Gibbs free minimization was performed to figure out the required steam-to-carbon ratio (S/C = 0–5) and reforming temperature (25–1000 °C) where coke formation was thermodynamically unfavorable. S/C, reforming temperature and product species strongly contributed to the coke formation and product composition. When chemical species DME, methanol, CO2, CO, H2, H2O and coke were considered, complete conversion of DME and hydrogen yield above 78% without coke formation were achieved at the normal operating temperatures of molten carbonate fuel cell (600 °C) and solid oxide fuel cell (900 °C), when S/C was at or above 2.5. When CH4 was favorable, production of coke and that of hydrogen were significantly suppressed.  相似文献   

11.
Biogas is a renewable biofuel that contains a lot of CH4 and CO2. Biogas can be used to produce heat and electric power while reducing CH4, one of greenhouse gas emissions. As a result, it has been getting increasing academic attention. There are some application ways of biogas; biogas can produce hydrogen to feed a fuel cell by reforming process. Urea is also a hydrogen carrier and could produce hydrogen by steam reforming. This study then employes steam reforming of biogas and compares hydrogen-rich syngas production and carbon dioxide with various methane concentrations using steam and aqueous urea solution (AUS) by Thermodynamic analysis. The results show that the utilization of AUS as a replacement for steam enriches the production of H2 and CO and has a slight CO2 rise compared with pure biogas steam reforming at a temperature higher than 800 °C. However, CO2 formation is less than the initial CO2 in biogas. At the reaction temperature of 700 °C, carbon formation does not occur in the reforming process for steam/biogas ratios higher than 2. These conditions led to the highest H2, CO production, and reforming efficiency (about 125%). The results can be used as operation data for systems that combine biogas reforming and applied to solid oxide fuel cell (SOFC), which usually operates between 700 °C to 900 °C to generate electric power in the future.  相似文献   

12.
CO2 reforming of CH4 to synthesis gas was investigated by cold plasma jet (CPJ) only and combination of cold plasma jet with Ni/γ-Al2O3 catalyst at atmospheric pressure. The higher selectivity of H2 and CO, and higher energy efficiency was obtained by this novel process. The optimum experimental conditions are: CH4 = 3.33 Nl/min, CO2 = 5.00 Nl/min, N2 = 8.33 Nl/min, and the input power at 770 W. The results showed that, for the plasma only, the conversions of CH4 and CO2 were 46% and 34%, the selectivities of CO and H2 were 85% and 78%, the energy efficiency was 2.9 mmol/kJ, respectively; for the combination of cold plasma jet with Ni/γ-Al2O3 catalyst, the conversions of CH4 and CO2 were increased by 14% and 6%, the yield of H2 and CO increased by 18% and 11%, the energy efficiency reached at 3.7 mmol/kJ, respectively. And the catalyst hasn't accessorial heating. The CPJ method has the advantage of simple processing and is easy to be industrialized.  相似文献   

13.
Biogas dry reforming is a promising technology for converting biomass into high-value products and reducing greenhouse gas emissions. Recent improvements to biogas reforming have mainly focused on the preparation of functional catalysts; however, little attention has been paid to the effects of catalyst configuration in plug flow reactors. In this study, a Ni/MgO catalyst for biogas reforming was synthesized via the wet impregnation method. Parameters were optimized using an experimental rig and then simulations were performed using an Aspen HYSYS reaction simulator. We simulated loading the same amount of catalyst into 1, 2, 3, or 10 zones inside the reactor and compared performance parameters, including H2 yield, CO yield, CH4 conversion, and CO2 conversion. The results of simulations showed that a 2-zone configuration with a catalyst ratio of 1:4 was optimal, with 88.2% H2 yield, 83.5% CO yield, 96.4% CH4 conversion, and 91.7% CO2 conversion. Catalyst zone number, catalyst distribution, and catalyst zone position all had significant effects on catalytic behavior. The findings of this study provide new insights into the processes of biogas reforming and other heterogeneous catalysis reactions.  相似文献   

14.
This study investigates dimethyl ether (DME) as a potential fuel for proton-conducting SOFCs with a conventional nickel cermet anode and a BaZr0.4Ce0.4Y0.2O3−δ (BZCY4) electrolyte. A catalytic test demonstrates that the sintered Ni + BZCY4 anode has an acceptable catalytic activity for the decomposition and steam reforming of DME with CO, CH4 and CO2 as the only gaseous carbon-containing products. An O2-TPO analysis demonstrates the presence of a large amount of coke formation over the anode catalyst when operating on pure DME, which is effectively suppressed by introducing steam into the fuel gas. The selectivity towards CH4 is also obviously reduced. Peak power densities of 252, 280 and 374 mW cm−2 are achieved for the cells operating on pure DME, a DME + H2O gas mixture (1:3) and hydrogen at 700 °C, respectively. After the test, the cell operating on pure DME is seriously cracked whereas the cell operating on DME + H2O maintains its original integrity. A lower power output is obtained for the cell operating on DME + H2O than on H2 at low temperature, which is mainly due to the increased electrode polarization resistance. The selection of a better proton-conducting phase in the anode is critical to further increase the cell power output.  相似文献   

15.
Plasma-enhanced catalytic biogas reforming for hydrogen-rich syngas production over a Ni–K/Al2O3 catalyst was investigated using a tabular dielectric barrier discharge non-thermal plasma reactor. To better understand the plasma catalysis synergy at elevated temperatures, we compared different reaction modes: plasma catalysis, plasma alone, and catalysis alone in a reaction temperature range of 160–400 °C. The combination of Ni–K/Al2O3 and plasma produced synergistic effects. Notably, the plasma-catalytic synergy was temperature-dependent and varied at different reaction temperatures. Using plasma catalysis, the maximum conversion of CH4 and CO2 (31.6% and 22.8%, respectively) was attained over Ni–K/Al2O3 at 160 °C, while increasing the reaction temperature to 340 °C noticeably enhanced the H2/CO ratio to 2.71. Moreover, compared to plasma-catalytic biogas reforming at 160 °C, increasing the reaction temperature to 400 °C suppressed biogas conversion with dramatically reduced coke formation on the Ni–K/Al2O3 surface from 6.81 wt% to 3.37 wt%.  相似文献   

16.
The effect of preparation method on the performance of Ni/Al2O3 catalysts for aqueous-phase reforming of ethanol (EtOH) has been investigated. The first catalyst was prepared by a sol–gel (SG) method and for the second one the Al2O3 support was made by a solution combustion synthesis (SCS) route and then the metal was loaded by standard wet impregnation. The catalytic activity of these catalysts of different Ni loading was compared with a commercial Al2O3 supported Ni catalyst [CM (10%)] at different temperatures, pressures, feed flow rates, and feed concentrations. Based on the product distribution, the proposed reaction pathway is a mixture of dehydrogenation of EtOH to CH3CHO followed by C–C bond breaking to produce CO + CH4 and oxidation of CH3CHO to CH3COOH followed by decarbonylation to CO2 + CH4. CH4(C2H6 and C3H8) also can form via Fischer–Tropsch reactions of CO/CO2 with H2. The CH4 (C2H6 and C3H8) reacts to form hydrogen and carbon monoxide through steam reforming, while CO converts to CO2 mostly through the water–gas shift reaction (WGSR). SG catalysts showed poorer WGSR activity than the SCS catalysts. The activation energies for H2 and CO2 production were 153, 155 and 167 kJ/mol and 158, 160 and 169 kJ/mol for SCS (10%), SG (10%), and CM (10%) samples, respectively.  相似文献   

17.
This paper focuses on investigating that the influence of O2, CO2 and H2O on characteristics of autothermal reforming of methane in micro premix chamber on Ni catalysts. In addition, the effect of catalytic wall temperature on autothermal reforming reaction of methane under a certain ratio of CH4/CO2/H2O/O2 is simulated. The results indicate that appropriately increasing O2 concentration can increase the conversion efficiency of CH4, so does adding CO2 or H2O. The positive effect of O2, CO2 and H2O is more pronounced at the higher temperature. The temperature range of 650–750 K is the important transitional region in the reactions of CH4/O2, CH4/H2O and CH4/CO2. It also gives a guide to the available range of parameters in the high efficiency reforming process of micro-reactor.  相似文献   

18.
Using mesoporous SBA-15 (Santa Barbara Amorphous No. 15, a mesoporous material) as support, Pd–Zn nanocatalysts with varying Pd and Zn content were tested for hydrogen production from methanol by partial oxidation and steam reforming reactions. The physico-chemical characteristics of the synthesized SBA-15 support were confirmed by XRD, N2 adsorption, SEM and TEM analyses. The PdZn alloy formation during the reduction of Pd–Zn/SBA-15 was revealed by XRD and DRIFT study of adsorbed CO. Also, the correlation between Pd and Zn loadings and PdZn alloy formation was studied by XRD and TPR analyses. The metallic Pd surface area and total uptakes of CO and H2 were measured by chemisorption at 35 °C. The metallic Pd surface area values are in linear proportion with the Pd loading. The formation of PdZn alloy during high temperature reduction was confirmed by a shift in absorption frequency of CO on Pd sites to lower frequency due to higher electron density at metal particles resulted from back-donation. The reduced Pd–Zn/SBA-15 catalysts were tested for partial oxidation of methanol at different temperatures and found that catalyst with 4.5 wt% Pd and 6.75 wt% Zn on SBA-15 showed better H2 selectivity with suppressed CO formation due to the enhanced Pd dispersion as well as larger Pd metallic surface area. The O2/CH3OH ratio is found to play a significant role in CH3OH conversion and H2 selectivity. The performance of 4.5 wt% Pd–6.75 wt% Zn/SBA-15 catalyst in steam reforming of methanol was also tested. Comparatively, the H2 selectivity is significantly higher than that in partial oxidation, even though the CH3OH conversion is less. Finally, the long term stability of the catalyst was tested and the nature of PdZn alloy after the reactions was found to be stable as revealed from the XRD pattern of the spent catalysts.  相似文献   

19.
Steam reforming of ethanol over an Ir/CeO2 catalyst has been studied with regard to the reaction mechanism and the stability of the catalyst. It was found that ethanol dehydrogenation to acetaldehyde was the primary reaction, and acetaldehyde was then decomposed to methane and CO and/or converted to acetone at low temperatures. Methane was further reformed to H2 and CO, and acetone was directly converted into H2 and CO2. Addition of CO, CO2, and CH4 to the water/ethanol mixture proved that steam reforming of methane and the water gas shift were the major reactions at high temperatures. The Ir/CeO2 catalyst displayed rather stable performance in the steam reforming of ethanol at 650 °C even with a stoichiometric feed composition of water/ethanol, and the effluent gas composition remained constant for 300 h on-stream. The CeO2 in the catalyst prevented the highly dispersed Ir particles from sintering and facilitated coke gasification through strong Ir–CeO2 interaction.  相似文献   

20.
Production of hydrogen by methanol steam reforming has been studied over a series of Ni/Al layered double hydroxide catalysts prepared by the co-precipitation method, with the aim to develop a stable catalyst that can be used in a membrane-joint performer at temperatures greater than 300 °C. H2, CO and CO2 are generally the major products together with trace amounts of CH4. The presence of potassium and/or sodium cations was found to improve the activity of methanol conversion. The selectivity for CO2 rather than CO was better with K ions than Na ions, especially at higher temperatures (e.g. 390–400 °C). Methanol steam reforming over a K-promoted Ni/Al layered double hydroxide catalyst resulted in better activity and similar stability compared to a commercial Cu catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号