首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transportation of cattle from the feedlot to the slaughter plant could influence hide contamination of Escherichia coli O157. A study was initiated to investigate the influence of transportation and lairage on shedding and hide contamination of E. coli O157. Fecal and hide samples were obtained from 40 pens of harvest-ready beef cattle at the feedlot prior to transport and again at the slaughter plant immediately after slaughter. Potential risk factors for hide contamination at the feedlot, during transport, and at slaughter were evaluated. A multilevel Poisson regression model was used to evaluate if transportation and lairage were associated with hide contamination by E. coli O157 in finished beef cattle. Lots of cattle held in E. coli O157-positive lairage pens had eight times greater risk of having positive slaughter hide samples compared with cattle held in culture-negative pens (relative risk, 8.0; 95% confidence interval, 1.6 to 38.8). Lots of cattle that were held in lairage pens contaminated with feces had three times greater risk for positive slaughter hide samples compared with cattle held in clean pens (relative risk, 3.1; 95% confidence interval, 1.2 to 7.9). Lots of cattle that were transported for long distances (> 160.9 km) had twice the risk of having positive hide samples at slaughter compared with cattle transported a shorter distance (relative risk, 2.4; 95% confidence interval, 1.1 to 5.1). These findings suggest that transportation and lairage should be considered in E. coli O157 control strategies.  相似文献   

2.
This study was conducted to identify the origin of Escherichia coli O157:H7 contamination on steer hides at the time of harvest. Samples were collected from the feedlot, transport trailers, and packing plant holding pens and from the colons and hides of feedlot steers. A total of 50 hide samples were positive for E. coli O157:H7 in two geographical locations: the Midwest (25 positive hides) and Southwest (25 positive hides). Hide samples were screened, and the presence of E. coli O157: H7 was confirmed. E. coli O157:H7 isolates were fingerprinted by pulsed-field gel electrophoresis and subjected to multiplex PCR procedures for amplification of E. coli O157:H7 genes stx1, stx2, eaeA, fliC, rfbEO157, and hlyA. Feedlot water trough, pen floor, feed bunk, loading chute, truck trailer side wall and floor, packing plant holding pen floor and side rail, and packing plant cattle drinking water samples were positive for E. coli O157:H7. Pulsed-field gel electrophoresis banding patterns were analyzed after classifying isolates according to the marker genes present and according to packing plant. In this study, hide samples positive for E. coli O157:H7 were traced to other E. coli O157:H7-positive hide, colon, feedlot pen floor fecal, packing plant holding pen drinking water, and transport trailer side wall samples. Links were found between packing plant side rails, feedlot loading chutes, and feedlot pens and between truck trailer, different feedlots, and colons of multiple cattle. This study is the first in which genotypic matches have been made between E. coli O157:H7 isolates obtained from transport trailer side walls and those from cattle hide samples within the packing plant.  相似文献   

3.
Hide has been established as the main source of carcass contamination during cattle processing; therefore, it is crucial to minimize the amount of Escherichia coli O157:H7 on cattle hides before slaughter. Several potential sources of E. coli O157: H7 are encountered during transportation and in the lairage environment at beef-processing facilities that could increase the prevalence and numbers of E. coli O157:H7 on the hides of cattle. On three separate occasions, samples were obtained from cattle at the feedlot and again after cattle were stunned and exsanguinated at the processing plant (286 total animals). The prevalence of E. coli O157:H7 on hides increased from 50.3 to 94.4% between the time cattle were loaded onto tractor-trailers at the feedlot and the time hides were removed in the processing plant. Before transport, nine animals had E. coli O157:H7 in high numbers (> 0.4 CFU/cm2) on their hides. When sampled at the slaughter facility, the number of animals with high hide numbers had increased to 70. Overall, only 29% of the E. coli O157:H7 isolates collected postharvest (221 of 764) matched pulsed-field gel electrophoresis types collected before transport. The results of this study indicate that transport to and lairage at processing plants can lead to increases in the prevalence and degree of E. coli O157:H7 contamination on hides and the number of E. coli O157:H7 pulsed-field gel electrophoresis types associated with the animals. More study is needed to confirm the mechanism by which additional E. coli O157:H7 strains contaminate cattle hides during transport and lairage and to design interventions to prevent this contamination.  相似文献   

4.
Transportation from the feedlot and lairage at the processing plant have been identified as potential sources of Escherichia coli O157:H7 and Salmonella hide contamination. The objective of this study was to perform a comprehensive tracking analysis of E. coli O157:H7 and Salmonella associated with beef cattle from the feedlot through processing. Cattle (n = 581) were sampled in a feedlot, then transported in multiple lots to three commercial, fed beef processing plants in the United States, where they were sampled again. Samples were collected from the tractor trailers prior to loading cattle and from the lairage environment spaces prior to entry of the study cattle. Pathogen prevalence on cattle hides increased on every lot of cattle between exiting the feedlot and beginning processing. Prior to loading cattle, E. coli O157:H7 was found in 9 (64%) of 14 tractor trailers. E. coli O157:H7 was detected in over 60% of the samples from each lairage environment area, while Salmonella was detected in over 70% of the samples from each lairage environment area. E. coli O157:H7 and Salmonella isolates (n = 3,645) were analyzed using pulsed-field gel electrophoresis. The results of the pulsed-field gel electrophoresis tracking indicate that the transfer of bacteria onto cattle hides that occurs in the lairage environments of U.S beef processing plants accounts for a larger proportion of the hide and carcass contamination than does the initial bacterial population found on the cattle exiting the feedlot. Finally, the results of this study indicate that hide wash cabinets are effective in removing contamination derived from the lairage environment.  相似文献   

5.
Prevalence of Escherichia coli O157 on cattle entering the slaughter floor may range from 10 to > 70%. This study was conducted to determine the effect of E. coli O157 prevalence in fecal pats collected from feedlot pen floors on subsequent E. coli O157 prevalence on carcasses at various points in the slaughter process. Fecal pats from the feedlot pen floor were collected within 3 days before slaughter. During cattle processing at the slaughter facility, additional samples were collected from the hide, from the colon, and from the carcasses before and after evisceration and after final decontamination. Of 15 lots (a group of cattle from the same pen from a feedlot) sampled, 87% had at least one positive fecal pat from the feedlot floor, 47% had a positive hide sample, 73% had a positive colon/fecal sample, and 47% had a positive carcass sample preevisceration; however, only 8% of lots had a positive carcass sample postevisceration or after final intervention. Of the total samples tested (n = 1,328), 24.7, 14.7, 27.6, 10.1, 1.4, and 0.3% of fecal pats from the feedlot floor, hide, colon, preevisceration, postevisceration, and final intervention samples, respectively, were positive for E. coli O157. Pens with greater than 20% positive fecal pats from the feedlot floor had 25.5% hide, 51.4% colon, and 14.3, 2.9, and 0.7% carcass samples positive at preevisceration, at postevisceration, and after final intervention, respectively. However, fecal pats from feedlot floor samples that contained less than 20% positive fecal samples showed lower pathogen prevalence, with 5.0% hide, 7.5% colon, and 6.3, 0, and 0% carcass positive samples at preevisceration, postevisceration, and post-final intervention, respectively. Data from this study can be used as part of risk assessment processes in order to identify mitigation strategies to minimize prevalence of E. coli O157 on fresh beef carcasses.  相似文献   

6.
The effects of weaning and transport on fecal shedding of Escherichia coli and on E. coli O157:H7 were investigated using 80 Angus and 94 Charolais range steer calves blocked by breed and assigned to four treatments. The calves were or were not preconditioned before transport on commercial cattle liner to the feedlot via long (15 h) or short (3 h) hauling duration, yielding preconditioned long haul (P-L; n = 44), preconditioned short haul (P-S; n = 44), nonpreconditioned long haul (NP-L; n = 43), and nonpreconditioned short haul (NP-S; n = 43). Preconditioned calves were vaccinated and weaned 29 and 13 days, respectively, before transport. Nonpreconditioned calves were weaned 1 day before long or short hauling, penned for 24 h and hauled again for 2 h, and vaccinated on arrival at the feedlot. Fecal samples were collected from calves while on pasture, at weaning, at loading for transport, on arrival at the feedlot, twice in the first week, and on days 7, 14, 21, and 28 for enumeration of total E. coli (biotype 1) and detection of E. coli O157:H7. No calves were positive for E. coli O157:H7 before transport. Following transport, more (P < 0.005) NP-L calves (6 of 43) tested positive for E. coli O157:H7 than did P-L (1 of 44), NP-S (1 of 43), or P-S (0 of 44) calves, and on days 0, 1, 7, and 21, their levels of shedding of E. coli were higher (P < 0.005). The calves' susceptibility to infection from the environment (possibly the holding facilities or feedlot pens) was likely elevated by the stresses of weaning, transport, and relocation. Lack of preconditioning and long periods of transport (NP-L) increased fecal shedding of E. coli and E. coli O157:H7. Preconditioning may serve to reduce E. coli O157:H7 shedding by range calves on arrival at the feedlot.  相似文献   

7.
The aim of this study was to investigate fecal shedding and transmission of E. coli O157 in cohorts of cattle within a feedlot, to assess subsequent contamination of carcasses with this pathogen and to identify risk factors associated with fecal shedding of E. coli O157. A cohort of 133 heifers housed infour adjacent pens was examined over a five month period, from entering the feedlot to slaughter. Individual rectal fecal samples and pen environmental samples were taken at monthly intervals. The entire outer and inner surfaces of a carcass side of each animal were swabbed immediately following slaughter.
E. coli O157 was isolated from 136 (23%) of the 600 rectal fecal samples; 96% of which contained virulent markers. One hundred and sixty environmental samples were examined and E. coli O157 was isolated from 46 (29%), all of which contained virulent markers. E. coli O157 was not isolated from any of the dressed carcasses. The prevalence of E. coli O157 fecal shedding may be related to the pen and E. coli O157 contamination of the pen floor feces, water trough and feed.
E. coli O157 should be considered as a pathogen shed in the feces of a substantial proportion of feedlot cattle. However, with good hygienic practice at harvest, a very low level of this pathogen can be achieved on dressed carcasses.  相似文献   

8.
The extent of contamination with Escherichia coli O157 was determined for 100 cattle during slaughter. Samples from 25 consecutively slaughtered cattle from four unrelated groups were collected from the oral cavity, hide, rumen, feces after evisceration, and pre- and postchill carcass. Ten random fecal samples were collected from the pen where each group of animals was held at the abattoir. E. coli O157 was detected using automated immunomagnetic separation (AIMS), and cell counts were determined using a combination of most probable number (MPN) and AIMS. E. coli O157 was isolated from 87 (14%) of the 606 samples collected, including 24% of 99 oral cavity samples, 44% of 100 hides, 10% of 68 fecal samples collected postevisceration, 6% of 100 prechill carcass swabs, and 15% of 40 fecal samples collected from holding pens. E. coli O157 was not isolated from rumen or postchill carcass samples. E. coli O157 was isolated from at least one sample from each group of cattle tested, and the prevalence in different groups ranged from less than 1 to 41%. The numbers of E. coli O157 differed among the animals groups. The group which contained the highest fecal (7.5 x 10(5) MPN/g) and hide (22 MPN/cm2) counts in any individual animal was the only group in which E. coli O157 was isolated from carcasses, suggesting a link between the numbers of E. coli O157 present and the risk of carcass contamination. Processing practices at this abattoir were adequate for minimizing contamination of carcasses, even when animals were heavily contaminated with E. coli O157.  相似文献   

9.
The aim of this study was to investigate contamination of carcasses and abattoir environment with Escherichia coli O157:H7. Five abattoirs in Istanbul were visited between January 2000 and April 2001. During visits, sampling was performed and a total of 330 cattle were selected. Cattle were examined for the presence of faeces on the hide (abdomen and legs) before slaughter. The swabs from the carcasses and environmental samples (abattoir floor, benches including conveyors, knives, aprons, saws, hooks, hands) were taken at the abattoir immediately after slaughter using sterile cotton swabs. A sample from the wash water of the abattoir was also taken. Preenrichment, immunomagnetic separation and CT-SMAC agar were used for the isolation. The reaction of the isolates with anti-O157 and H7 antisera were also analysed. Twelve strains (3.6%) of E. coli O157 were isolated from the cattle carcasses and eight (2.4%) of them gave positive reaction with anti-H:7. Six strains of E. coli O157 were isolated from the environmental samples and all strains were positive for H7. The number of E. coli O157H:7 strains isolated from the environmental samples was two from the knife, two from the hands, one from the apron and one from the floor. No E. coli O157 was isolated from the abattoir water.  相似文献   

10.
Prevalences of Escherichia coli O157:H7, Salmonella, and total aerobic microorganisms were determined on the hides of beef feedlot cattle before and after transport from the feedyard to the harvest facility in clean and dirty trailers. Swab samples were taken from the midline and withers of 40 animals on each of 8 days before and after shipping. After samples were collected, animals were loaded in groups of 10 on upper and lower levels of clean and dirty trailers. Animals were unloaded at the harvest facility and kept in treatment groups for sample collection after exsanguination. Salmonella was found more often on hide swabs collected from the midline than on than samples collected from the withers from animals transported in both clean and dirty trailers. Salmonella was found on significantly more hide swabs collected at harvest from both sampling locations than on those collected at the feedyard, with no differences attributed to the type of trailer. At the feedyard, clean trucks had a lower percentage of Salmonella-positive samples than did dirty trucks before animals were loaded. However, after transport, both clean and dirty trucks had a similar prevalence of Salmonella. There were no differences in Salmonella prevalence on hides collected from animals transported on the top and bottom levels of clean and dirty trucks. E. coli O157:H7 was detected on less than 2% of the samples; therefore, no practical conclusions about prevalence could be drawn. Hides sampled at harvest had higher concentrations of aerobic microorganisms than did hides sampled at the feedyard, and concentrations were higher on the midline than on the withers. Although the prevalences of Salmonella and total aerobic microorganisms increased on hides after transport from the feedyardto the plant, this increase was not related to the cleanliness of the trailers or the location of the cattle in the trailers.  相似文献   

11.
In a cattle slaughterhouse, sampling was performed over a 1-week period to examine the prevalence and possible contamination routes of Escherichia coli O157. Each sampling day, swab samples were collected from the slaughterhouse environment before onset of slaughter, from the slaughterline, and from 20 successively slaughtered animals. Isolation of E. coli O157 consisted of a 6-hour enrichment followed by immunomagnetic separation and selective plating. From the 394 samples taken, 84 (21%) were positive for E. coli O157. Pulsed-field gel electrophoresis (PFGE) of collected isolates produced 26 different profiles, from which 5 PFGE profiles carried two or more Stx genes. The combination of PFGE profiles and Stx types resulted in 32 different E. coli O157 types. E. coli O157 was found in the slaughterhouse environment before the onset of slaughter. The first two sampling days, feces and carcasses were found negative. On the third sampling day, five fecal samples and four carcasses from animals negative in the feces were positive. Hide of the anal region and the shoulder were found positive every sampling day. The shoulder hide was more than twice as contaminated as the anal region hide. Typing of different isolates from a sample showed that frequently different E. coli O157 types were presented. On sampling days 1 and 2, types present in the environment and on the hides of the slaughtered animals differed. On the third sampling day, two dominant types were found in the environment (even before the onset of slaughter), as well as on the hides, feces, and carcasses. Although examined animals originated from different farms, one (two on day 3) dominant E. coli O157 type was present on their hides each sampling day. These data indicated that (i) the progress of contamination can differ from day to day within a slaughterhouse and (ii) contact between animals after the departure from the farm can have a large effect on the spread of E. coli O157 hide contamination.  相似文献   

12.
Two sampling methods (rectoanal swabs and rectal fecal grabs) were compared for their recovery of Escherichia coli O157:H7 from feedlot cattle. Samples were collected from 144 steers four times during the finishing period by swabbing the rectoanal mucosa with cotton swabs and immediately obtaining feces from the rectum of each individual steer. The number of steers with detectable E. coli O157:H7 increased from 2 of 144 (1.4%) cattle on arrival at the feedlot to 10 of 144 (6.9%) after 1 month, 76 of 143 (52.8%) after 7 months, and 30 of 143 (20.8%) at the last sampling time before slaughter. Wilcoxon signed-rank tests indicated that the two sampling methods gave different results for sampling times 3 and 4 (P < 0.05) but not for sampling time 2 (P = 0.16). Agreement between the two sampling methods was poor (kappa < 0.2) for three of the four sampling times and moderate (kappa = 0.6) for one sampling time, an indication that in this study rectoanal swabs usually were less sensitive than rectal fecal grabs for detection of E. coli O157:H7 in cattle. Overall, the herd of origin was not significantly associated with E. coli O157:H7 results, but the weight of the steers was. Further investigation is needed to determine the effects of potential confounding factors (e.g., size and type of swab, consistency of feces, site sampled, and swabbing technique) that might influence the sensitivity of swabs in recovering E. coli O157:H7 from the rectoanal mucosa of cattle.  相似文献   

13.
This study was conducted to develop an experimental model that could assess the ability of Escherichia coli O157:H7-inoculated fecal pats to mimic a super shedder (>10(4) CFU/g of feces) within a feedlot environment. The day before the study began, 48 steers that had been negative for E. coli O157:H7 in feces for three consecutive weeks were sorted into three treatment groups, with two replicate pens per treatment and 8 steers per pen. Steers within the pens (20.50 by 10.75 m) were exposed to control feces or feces inoculated with two levels of a mixture of five strains of nalidixic acid-resistant E. coli O157:H7 (low level, 10(2) CFU/g; high level, 10(5) CFU/g). Five 300-g fecal pats were introduced into the pens twice daily (10:00 a.m. and 2:30 p.m.) on days 0 through 6 and days 14 through 20. Pats were placed in the pen at random locations to mimic defecation of a steer within the pen. Fecal grab samples, hide swab samples (500-cm2 area of the rump), natural fecal pat samples (freshly voided), and rope samples (1.22-m-long manila rope) where obtained at multiple times during the 49-day trial to evaluate the spread of nalidixic acid-resistant E. coli O157:H7 throughout the feedlot environment and among penmates. Immunomagnetic separation and selective media were used to detect E. coli O157:H7. Nalidixic acid-resistant E. coli O157:H7 was detected in 13 high-level treatment fecal grab samples, 7 high-level treatment hide swab samples, 1 low-level hide swab sample, and 2 high-level rope samples. For both fecal grab and hide swab samples, the overall prevalence of E. coli O157:H7 in the high-level group was greater (P < 0.01) than that for the pooled low-level and control groups. Addition of inoculated fecal pats to pens increased transmission of E. coli O157:H7 among penmates, but cattle that acquired E. coli O157:H7 shed the bacterium for only a short time at low levels. Transmission of E. coli O157:H7 from the feces of super shedders to naive penmates may contribute to the observed transient nature of shedding of E. coli O157:H7 among feedlot cattle.  相似文献   

14.
Fecal shedding of Escherichia coli O157:H7, the prevalence of Escherichia coli O157:H7 in pens and on carcasses and hides, and cattle performance as a result of daily dietary supplementation with Lactobacillus-based direct-fed microbials (DFMs) were evaluated in a feeding trial involving 180 beef steers. Steers were evaluated for shedding of E. coli O157:H7 by an immunomagnetic separation technique on arrival at the feedlot, just before treatment with the DFMs, and every 14 days thereafter until slaughter. Composite pen fecal samples were collected every 14 days (alternating weeks with animal testing), and prevalence on hides and carcasses at slaughter was also evaluated. Feedlot performance (body weight gain and feed intake) was measured for the period during which the DFMs were fed. Gain efficiency was calculated as the ratio of weight gain to feed intake. Lactobacillus acidophilus NPC 747 decreased (P < 0.01) the shedding of E. coli O157:H7 in the feces of individual cattle during the feeding period. E. coli O157:H7 was approximately twice as likely to be detected in control animal samples as in samples from animals receiving L. acidophilus NPC 747. In addition, DFM supplementation decreased (P < 0.05) the number of E. coli O157:H7-positive hide samples at harvest and the number of pens testing positive for the pathogen. Body weight gains (on a live or carcass basis) and feed intakes during the DFM supplementation period did not differ among treatments. Gain efficiencies on a live-weight basis did not differ among treatments, but carcass-based gain/feed ratios tended (P < 0.06) to be better for animals receiving the two DFM treatments than for control animals. The results of this study suggest that the feeding of a Lactobacillus-based DFM to cattle will decrease, but not eliminate, fecal shedding of E. coli O157:H7, as well as contamination on hides, without detrimental effects on performance.  相似文献   

15.
Contamination of the brisket areas of the hides of healthy adult cattle with Shiga toxin-producing Escherichia coli O157 at slaughter in England was studied. In total, 73 cattle consignments comprising 584 animals delivered to one abattoir over 3 days during 1 week in July 2001 were studied: 26 cattle consignments arriving on Monday, 32 consignments arriving on Wednesday, and 15 consignments arriving on Friday. Consignment sizes ranged from 1 to 23 animals, with a mean consignment size of 8. The hide of the first animal to be slaughtered in each consignment was sampled by using a sponge swab moistened with 0.85% saline to rub an unmeasured brisket (ventral) area (ca. 30 by 30 cm). The process of isolating E. coli O157 from the swabs consisted of enrichment, screening with immunoprecipitation assay kits, and immunomagnetic separation. E. coli O157 was found on 24 of 73 (32.9%) cattle hides examined, and 21 of these 24 isolates produced Shiga toxins. The 24 E. coli O157 isolates produced six different pulsed-field gel electrophoresis profiles, and 18 (75%) of the isolates were of one prevalent clone. The high prevalence of one E. coli O157 clone on the hides of cattle at slaughter could be due to a high prevalence of that clone on the 18 farms involved (not investigated in the current study), in the postfarm transport or lairage environments, or both. Since the lairage environment, but not the farm of origin or the postfarm transport vehicle, was a factor common to all 18 cattle consignments, it could have played an important role in spreading the prevalent E. coli O157 clone to the cattle hides. Lairage pen floors and the stunning box floor were identified as the most probable sites along the unloading-to-slaughter route at which the brisket areas of cattle hides could become contaminated.  相似文献   

16.
Harborage of Escherichia coli O157:H7 and Salmonella on animal hides at slaughter is the main source of beef carcass contamination during processing. Given this finding, interventions have been designed and implemented to target the hides of cattle following entry into beef processing plants. Previous interventions targeting hides have not been suitable for all beef processing plants because of cost and space restrictions. In this study, a hide wash cabinet was evaluated to determine whether it was more amenable to widespread use in the beef processing industry, especially for small and medium-size plants. Overall, 101 (35.1%) of 288 beef cattle hides sampled before entry into the hide wash cabinet harbored E. coli O157:H7 at or above the limit of detection (40 CFU/100 cm2). After passage through the hide wash cabinet, only 38 (13.2%) of 288 hides had E. coli O157:H7 levels > or =40 CFU/100 cm2. Before the hide wash cabinet, 50 (17%) of 288 hides harbored E. coli O157:H7 at levels above 100 CFU/100 cm2, with one sample as high as 20,000 CFU/100 cm2. In contrast, only 14 (5%) of 288 hides had E. coli O157:H7 levels above 100 CFU/100 cm2 after hide washing, with the highest being 2000 CFU/100 cm2. These same trends also were found for Salmonella before and after hide washing. These results indicate that the hide wash cabinet described in this study was effective and should provide small and medium-size processing plants with an affordable hide wash intervention strategy.  相似文献   

17.
Field studies evaluating the effects of multiple concurrent preharvest interventions for Escherichia coli O157 are logistically and economically challenging; however, modeling techniques may provide useful information on these effects while also identifying crucial information gaps that can guide future research. We constructed a risk assessment model with data obtained from a systematic search of scientific literature. Parameter distributions were incorporated into a stochastic Monte Carlo modeling framework to examine the impacts of different combinations of preharvest and harvest interventions for E. coli O157 on the risk of beef carcass contamination. We estimated the risk of E. coli O157 carcass contamination conditional on preharvest fecal prevalence estimates, inclusion of feed additive(s) in the diet, vaccination for E. coli O157, transport and lairage effects, hide intervention(s), and carcass intervention(s). Prevalence parameters for E. coli O157 were assumed to encompass potential effects of concentration; therefore, concentration effects were not specifically evaluated in this study. Sensitivity analyses revealed that fecal prevalence, fecal-to-hide transfer, hide-to-carcass transfer, and carcass intervention efficacy significantly affected the risk of carcass contamination (correlation coefficients of 0.37, 0.56, 0.58, and -0.29, respectively). The results indicated that combinations of preharvest interventions may be particularly important for supplementing harvest interventions during periods of higher variability in fecal shedding prevalence (i.e., summer). Further assessments of the relationships among fecal prevalence and concentration, hide contamination, and subsequent carcass contamination are needed to further define risks and intervention impacts for E. coli O157 contamination of beef.  相似文献   

18.
The objective of this study was to evaluate the effect of typical production practices during the transport of cattle on the resulting incidence of Salmonella and Campylobacter in the feces, on the hides, and on the carcasses of these cattle and in the environment (trucks, holding pens, and knock boxes). Various factors were evaluated, including the type of animal (feedlot cattle vs. adult pasture cattle), the breed of cattle, the body condition of the animal, the age of the animal, the time of feed and water withdrawal, the contamination level of the transport vehicle at the feedlot or farm, the transport time, the time cattle were held in the holding pen at the plant, and the contamination level of the holding pen. Four groups of each type of animal were sampled on different days. Samples were collected from cattle prior to transport and after transport (rectal and hide swabs) as well as from the carcasses of these cattle. Pre- and posttransit samples were also taken from the transport vehicle and from the holding pen and knock box at the slaughter facility. For feedlot cattle, fecal shedding stayed fairly constant for both organisms before and after transport (3 to 5% for Salmonella and 64 to 68% for Campylobacter). However, the shedding rate for adult cattle increased from 1 to 21% for Salmonella but stayed constant for Campylobacter (6 to 7%). Contamination of hides with Salmonella increased for both animal types from a level of 18 to 20% to a level 50 to 56%. For Campylobacter, the contamination level decreased from 25 to 13% for feedlot cattle but remained unchanged for adult animals (1 to 2%). Nineteen percent of feedlot cattle carcasses and 54% of adult cattle carcasses tested positive for Salmonella, while only2% of feedlot cattle carcasses and none of the adult cattle carcasses tested positive for Campylobacter. Thus, for feedlot cattle, the factors considered in this study did not affect the shedding of either organism but did affect the contamination of hides with both. For adult animals, the factors increased both shedding of and hide contamination with Salmonella only, not Campylobacter.  相似文献   

19.
Ascophyllum nodosum (Tasco-14) decreased the prevalence of enterohemorrhagic Escherichia coli (EHEC) O157:H7 in animals fed prior to harvest. Tasco-14 was supplemented on a 2% dry matter basis 14 days prior to harvest to determine its effects on EHEC and Salmonella spp. prevalence. Two hundred mixed crossbred steers and heifers (Bos indicus x Bos taurus), in a large commercial finishing facility, served as experimental units. Treatment (TRT, n = 100) animals received a steam-rolled corn-based diet containing 2% Tasco-14 on a dry matter basis, and control (CON, n = 100) animals received only the steam-rolled corn-based diet. Hide swabs and fecal samples were obtained for EHEC and Salmonella spp. evaluations. Animals were sampled 1 day prior to (d - 1) the feeding of Tasco-14 and immediately following exsanguinations. The prevalence of EHEC O157 on hide swabs and in fecal samples (P = 0.0001 and P < 0.0001, respectively) and the prevalence of EHEC O157:H7 on hide swabs and in fecal samples (P < 0.0001 and P < 0.0001, respectively) was reduced by 33 and 36% from d - 1 levels on TRT hide swabs and by 9 and 11% in TRT fecal samples. The prevalence of EHEC O157 and EHEC O157:H7 was reduced by 33 and 36% from d - 1 levels on TRT hide swabs and by 9 and 11% in TRT fecal samples. The prevalence of Salmonella spp. on hide swabs did not change for TRT animals (P = 0.64). CON animals showed an increase in Salmonella spp. prevalence (P < 0.0001) from d - 1 feeding levels on hide swabs. The prevalence of Salmonella spp. increased in both TRT and CON fecal samples when compared to d - 1 levels (P = 0.002). However, TRT samples exhibited a lower (P < 0.05) postfeeding prevalence of Salmonella spp. in fecal samples than did CON samples. Results from this study indicate that 2% Tasco-14 supplementation in feedlot cattle diets reduces EHEC O157 and EHEC O157:H7 prevalence on hide swabs and in fecal samples and may suppress increases in Salmonella spp.  相似文献   

20.
Cattle are an important reservoir of Escherichia coli O157:H7, which can lead to contamination of food and water, and subsequent human disease. E. coli O157:H7 shedding in cattle has been reported as seasonal, with more animals shedding during summer and early fall than during winter. North Dakota has relatively cold weather, especially in winter and early spring, compared with many other regions of the United States. The objective was to assess fecal shedding of E. coli O157:H7 in North Dakota feedlot cattle over the fall, winter, and early spring. One hundred forty-four steers were assigned randomly to 24 pens on arrival at the feedlot. Samples of rectal feces were obtained from each steer four times (October and November 2003, and March and April 2004) during finishing. On arrival (October 2003), 2 (1.4%) of 144 cattle were shedding E. coli O157:H7. The shedding increased significantly to 10 (6.9%) of 144 after 28 days (November 2003), to 76 (53%) of 143 at the third sampling (March 2004), and dropped significantly to 30 (21%) of 143 at the fourth (last) sampling (March 2004) before slaughter. Unfortunately, we were unable to sample the cattle during winter because of the extreme weather conditions. Sampling time significantly (P < 0.0001) influenced variability in E. coli O157:H7 shedding, whereas herd (P = 0.08) did not. The prevalence of E. coli O157:H7 shedding in North Dakota steers in fall and early spring was comparable to what has been reported in other parts of the United States with relatively warmer weather. Further research into E. coli O157:H7 shedding patterns during extreme weather such as North Dakota winters is warranted in order to fully assess the seasonal effect on the risk level of this organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号