首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Zusammenfassung Der elektrische Pulverwiderstand und der Wassergehalt von Batteriebraunsteinen hängen nur locker miteinander zusammen. Immerhin läßt sich der von anderen Autoren beobachtete Trend bestätigen: der Widerstand quasi-amorpher und-MnO2 Sorten wächst generell mit dem Wassergehalt. Dabei werden Ausnahmen beobachtet,- und-MnO2 folgen dieser Regel nicht. Der Druckexponent zeigt selbst innerhalb der-Familie kein einheitliches Verhalten.
There is only a weak correlation between the resistivity of battery grade manganese dioxides and their water content. In general, however, the resistivity of amorphous and-MnO2 samples increases with rising water content. Exceptions were observed;-MnO2 and-MnO2 do not follow the rule. The pressure exponent deviates even in the-MnO2 type of structure.
  相似文献   

2.
The kinetics of copper electrocrystallization in citrate electrolytes (0.5M CuSO4, 0.01 to 2M sodium citrate) and citrate ammonia electrolytes (up to pH 10.5) were investigated. The addition of citrate strongly inhibits the copper reduction. For citrate concentrations ranging from 0.6 to 0.8 M, the impedance plots exhibit two separate capacitive features. The low frequency loop has a characteristic frequency which depends mainly on the electrode rotation speed. Its size increases with increasing current density or citrate concentration and decreases with increasing electrode rotation speed. A reaction path is proposed to account for the main features of the reduction kinetics (polarization curves, current dependence of the current efficiency and impedance plots) observed in the range 0.5 to 0.8 M citrate concentrations. This involves the reduction of cupric complex species into a compound that can be either included as a whole into the deposit or decomplexed to produce the metal deposit. The resulting excess free complexing ions at the interface would adsorb and inhibit the reduction of complexed species. With a charge transfer reaction occurring in two steps coupled by the soluble Cu(I) intermediate which is able to diffuse into the solution, this model can also account for the low current efficiencies observed in citrate ammonia electrolytes and their dependencies upon the current density and electrode rotation speed.Nomenclature b, b 1, b 1 * Tafel coefficients (V–1) - bulk concentration of complexed species (mol cm–3) - (si*) concentration of intermediate C* atx=0 (mol cm–3) - C concentration of (Cu Cit H)2– atx=0 (mol cm–3) - C C variation due to E - C concentration of complexing agent (Cit)3- at the distancex (mol cm–3) - C o concentrationC atx=0 (mol cm–3) - C o C o variation due to E - Cv s bulk concentrationC (mol cm–3) - (Cit H), (Cu), (Compl) molecular weights (g) - C dl double layer capacitance (F cm–2) - D diffusion coefficient of (Cit)3- (cm2s–1) - D 1 diffusion coefficient of C* (cm2s–1) - E electrode potential (V) - f 1 frequency in Equation 25 (s–1) - F Faraday's constant (96 500 A smol–1) - i, i 1, i 1 * current densities (A cm–2) - i i variation due to E - Im(Z) imaginary part ofZ - j - k 1, k 1 * , K1, K 1 * , K2, K rate constants (cms–1) - K rate constant (s–1) - K 3 rate constant (cm3 A–1s–1) - R t transfer resistance (cm2) - R p polarization resistance (cm2) - Re(Z) real part ofZ - t time (s) - x distance from the electrode (cm) - Z f faradaic impedance (cm2) - Z electrode impedance (cm2) Greek symbols maximal surface concentration of complexing species (molcm–2) - thickness of Nernst diffusion layer (cm) - , 1, 2 current efficiencies - angular frequency (rads–1) - electrode rotation speed (revmin–1) - =K –1(s) - d diffusion time constant (s) - electrode coverage by adsorbed complexing species - (in0) electrode coverage due toC s - variation due to E  相似文献   

3.
Fluorine-evolving carbon anodes exhibit unusually high overvoltages characterized also by remarkably large Tafel slopes having values 0.4–0.8 V per decade of current density change. Also, at high current densities, a so-called anode effect associated with a type of passivation sets in. Experiments are described which aim to distinguish high polarization arising from an intrinsically large Tafel slope, generated by a non-ohmic charge transfer barrier layer effect due to CF film formation, from effects due to difficulties of F2 bubble detechment and F2 gas film formation at the CF film. Steady state polarization measurements have been made at a rotating carbon cone electrode from which F2 bubbles, which otherwise remain attached to the electrode and block access to the electrolyte, can be spun away. At the rotated electrode, at low and intermediate current densities, linear Tafel behaviour is still observed but with high slopes associated with the barrier layer film effect. At higher current densities an anode effect, associated with the F2 gas film, is developed, leading to a type of passivation of the electrode. The two sources of unusually high polarization in the F2 evolution reaction at carbon are not independent as it is also the formation of the CF film that causes difficulties in gas bubble detachment owing to the lyophobic properties of the fluorinated C/F2/KF·2HF interface. Polishing effects confirm this conclusion.  相似文献   

4.
H. He  H.X. Dai  K.Y. Ngan  C.T. Au 《Catalysis Letters》2001,71(3-4):147-153
The physico-chemical properties of passivated -Mo2N have been investigated. The material showed high activities for NO direct decomposition: nearly 100% NO conversion and 95% N2 selectivity were achieved at 450C. The amount of O2 taken up by -Mo2N increased with temperature rise and reached 3133.9 molg–1 at 450C; we conclude that there formation of Mo2OxNy occurred. This oxygen-saturated -Mo2N material was catalytically active: NO conversion and N2 selectivity were 89 and 92% at 450C. We found that by means of H2 reduction at 450C, Mo2OxNy could be reduced back to -Mo2N and the oxidation/reduction cycle is repeatable; such a behaviour and the high oxygen capacity (3133.9 molg–1) of -Mo2N suggest that -Mo2N is a promising catalytic material for automobile exhaust purification.  相似文献   

5.
Parameters which affect the electrosynthesis of 4,4-dinitroazobenzene from p-nitroaniline on platinum and PbO2 electrodes were investigated and optimum conditions were determined. Maximum conversion efficiency for electrosynthesis was 95% with a pure -PbO2 electrode. It was found that the electrocatalytic activity of a PbO2 electrode depends upon its / ratio and its degree of crystallinity. The effects of the added base and water on the conversion efficiency were also elucidated.  相似文献   

6.
-type manganese oxide (-MnO2) was synthesized by pyrolysis of manganese carbonate and potassium t-butoxide. The method is valid even when their molar basis fraction is varied from 0% to 100%. For some potassium butoxide content percentages, the calcined material which is mainly -MnO2 contained an admixture phase of bixbyite (0–7%) or -Mn2O3(11–20%) or both the latter phases (7–11%). The acid-treated materials are single phase -MnO2 containing various amounts of structural-water. The degree of crystallinity is very high when the material was prepared with a potassium butoxide content of less than 20%, but materials of distorted structure are obtained with over 20%. The materials of high crystallinity contain less than about 0.5 molecules of structural-water per open pore site, but the distorted materials contain about two molecules of the water per site. The degree of ease of deformation, namely, the flexibility of the structure was an index to the amount of ion-exchange uptake on the materials. The possibility of controlling the properties of -MnO2 ion-exchange material is suggested by changing potassium butoxide content in this synthetic procedure.  相似文献   

7.
Mass transfer rates at planar electrodes and electrodes of expanded metal placed in the centre of a bubble column were measured. The gas velocity and the physical properties of the electrolytic solutions were varied and different types of expanded metal were investigated. In some cases increases in the mass transfer coefficient over the planar electrode value of more than 100% were obtained. Dimensionless correlations are presented for the different systems.Nomenclature A mean mesh aperture - D diffusivity - D c column diameter - g acceleration due to gravity - Ga Galileo number =gL 3/v 2 - Gr Grashof number =gL 3/v 2 - k mass transfer coefficient - L electrode height - r radial position - R column radius - Re Reynolds number =R h V s/ - R h hydraulic radius = / - Sc Schmidt number = /D - Sh Sherwood number =kL/D - Vs superficial velocity - gas void fraction - M porosity of expanded metal - kinematic viscosity - density - electrode area per unit volume - electrode area per unit net area  相似文献   

8.
Columnar, porous, magnetron-sputtered molybdenum and tungsten films show optinum performance as AMTEC electrodes at thicknesses less than 1.0 m when used with molybdenum or nickel current collector grids. Power densities of 0.40 W cm–2 for 0.5 m molybdenum films at 1200 K and 0.35 W cm–2 for 0.5 m tungsten films at 1180 K were obtained at electrode maturity after 40–90 h. Sheet resistances of magnetron sputter deposited films on sodium beta-alumina solid electrolyte (BASE) substrates were found to increase very steeply as thickness is decreased below about 0.3–0.4 m. The a.c. impedance data for these electrodes have been interpreted in terms of contributions from the bulk BASE and the porous electrode/BASE interface. Voltage profiles of operating electrodes show that the total electrode area, of electrodes with thickness <2.0 m, is not utilized efficiently unless a fairly fine (1×1mm) current collector grid is employed.  相似文献   

9.
Depolarization of the hydrogen evolution reaction on high purity polycrystalline cadmium electrodes in alkaline media (12pH14 and 5T55°C) produced by cathodization in the range of potential comprised between the Cd/Cd(OH)2 electrode potential and the net HER potential under solution stirring conditions has been studied. The depolarization effect depends on the perturbing potential programme and it is little affected by the alkaline cation in solution. Results are discussed in terms of three concurrent reactions, namely the electrochemical formation of Cd(OH)2 and soluble Cd(OH) 3 , the HER and the electrocrystallization of cadmium renewing the fresh active sites for the HER, SEM micrographs of activated cadmium electrodes reveal a heterogeneous surface topography of the new cadmium layers.  相似文献   

10.
An attractive way of determining the electrode kinetics of very fast dissolution reactions is that of measuring the corrosion potential in flowing solutions. This study analyses a critical aspect of the corrosion potential method, i.e., the effect of nonuniform corrosion distribution, which is very common in flow systems. The analysis is then applied to experimental data for zinc dissolution by dissolved bromine, obtained at a rotating hemispherical electrode (RHE). It is shown that in this case the current distribution effect is minor. However, the results also indicate that the kinetics of this corrosion system are not of the classical Butler-Volmer type. This is explained by the presence of a chemical reaction path in parallel with the electrochemical path. This unconventional corrosion mechanism is verified by a set of experiments in which zones of zinc deposition and dissolution at a RHE are identified in quantitative agreement with model predictions. The practical implications for the design of zinc/bromine batteries are discussed.Notation C i concentration of species i (mol cm–3) - D ` diffusivity of species i (cm2 s–1) - F Faraday constant - i j current density of species j (A cm–2) - i 0 b exchange current density referenced at bulk concentration (A cm–2) - J , inverseWa number - N - n number of electrons transferred for every dissolved metal atom - P m Legendre polynomial of orderm - r 0 radius of dise, sphere, or hemisphere - s stoichiometric constant - t + transference number of metal ion - V corr corrosion overpotential (V) Greek letters anodic transfer coefficient of Reaction 21b - a anodic transfer coefficient of metal dissolution - c cathodic transfer coefficient of metal dissolution - anodic transfer coefficient of zinc dissolution - velocity derivative at the electrode surface - (x) incomplete Gamma function - , exchange reaction order ofM +n - , inverseWa number - a activation overpotential (V) - c concentration overpotential (V) - polar angle (measured from the pole) (rad) - k solution conductivity (–1 cm–1) - kinematic viscosity (cm2 s–1) - 0 solution potential at the electrode surface (V) - rotation rate (s–1) - * indicates dimensionless quantities  相似文献   

11.
The oxidative polycondenzation reaction conditions of N, N-bis (2-hydroxy-1-naphthalidene) thiosemicarbazone (HNTSC) using air oxygen, H2O2 and NaOCl were studied in an aqueous alkaline medium between 50–90°C. Oligo-N, N-bis (2-hydroxy-1-naphthalidene) thiosemicarbazone was characterized by 1H-NMR, FT-IR, UV-Vis, size exclusion chromatography (SEC) and elemental analysis techniques. Solubility testing of oligomer was investigated using organic solvents such as DMF, THF, DMSO, methanol, ethanol, CHCl3, CCl4, toluene acetonitrile, ethyl acetate, concentrated H2SO4 and an aqueous alkaline solution. Using NaOCl, H2O2 and air O2 oxidants, conversion to oligo-N, N-bis (2-hydroxy-1-naphthalidene) thiosemicarbazone (OHNTSC) of N, N-bis (2-hydroxy-1-naphthalidene) thiosemicarbazone was found to be 85, 80 and 76%, respectively, in an aqueous alkaline medium. According to the SEC analyses, the number-average molecular weight, weight-average molecular weight and polydispersity index values of OHNTSC synthesized were found to be 1050 gmol–1 1715 gmol–1 and 1.63, using NaOCl, and 2137, 2957 gmol–1 and 1.38, using air O2 and 2155 gmol–1 4164 gmol–1 and 1.93, using air H2O2, respectively. Also, TG analysis was shown to be unstable of oligo-N, N-bis (2-hydroxy-1-naphthalidene) thiosemicarbazone against thermo-oxidative decomposition. The weight loss of OHNTSC was found to be 97.29% at 900°C.  相似文献   

12.
Vertical electrolysers with a narrow electrode gap are used to produce gases, for example, chlorine, hydrogen and oxygen. The gas voidage in the solution increases with increasing height in the electrolyser and consequently the current density is expected to decrease with increasing height. Current distribution experiments were carried out in an undivided cell with two electrodes each consisting of 20 equal segments or with a segmented electrode and a one-plate electrode. It was found that for a bubbly flow the current density decreases linearly with increasing height in the cell. The current distribution factor increases with increasing average current density, decreasing volumetric flow rate of liquid and decreasing distance between the anode and the cathode. Moreover, it is concluded that the change in the electrode surface area remaining free of bubbles with increasing height has practically no effect on the current distribution factor.Notation A e electrode surface area (m2) - A e,s surface area of an electrode segment (m2) - A e, 1–19 total electrode surface area for the segments from 1 to 19 inclusive (m2) - A e,a anode surface area (m2) - A e,a,h A e,a remaining free of bubbles (m2) - A e,e cathode surface area (m2) - A e,c,h A e,c remaining free of bubbles (m2) - a 1 parameter in Equation 7 (A–1) - B current distribution factor - B r B in reverse position of the cell - B s B in standard position of cell - b a Tafel slope for the anodic reaction (V) - b c Tafel slope for the cathodic reaction (V) - d distance (m) - d ac distance between the anode and the cathode (m) - d wm distance between the working electrode and an imaginary membrane (m) (d wm=0.5d wt=0.5d ac) - d wt distance between the working and the counter electrode (m) - F Faraday constant (C mol–1) - h height from the leading edge of the working electrode corresponding to height in the cell (m) - h e distance from the bottom to the top of the working electrode (m) - I current (A) - I s current for a segment (A) - I 20 current for segment pair 20 (A) - I 1–19 total current for the segment pairs from 1 to 19 inclusive (A) - i current density (A m–2) - i av average current density of working electrode (A m–2) - i b current density at the bottom edge of the working electrode (A m–2) - i 0 exchange current density (A m–2) - i 0,a i 0 for anode reaction (A m–2) - i l current density at the top edge of the working electrode (A m–2) - n 1 parameter in Equation 15 - n s number of a pair of segments of the segmented electrodes from their leading edges - Q g volumetric rate of gas saturated with water vapour (m3 s–1) - Q 1 volumetric rate of liquid (m3 s–1) - R resistance of solution () - R 20 resistance of solution between the top segments of the working and the counter electrode () - R p resistance of bubble-free solution () - R p,20 R p for segment pair 20 () - r s reduced specific surface resistivity - r s,0 r s ath=0 - r s,20 r s for segment pair 20 - r s, r s for uniform distribution of bubbles between both the segments of a pair - r s,,20 r s, for segment pair 20 - T temperature (K) - U cell voltage (V) - U r reversible cell voltage (V) - v 1 linear velocity of liquid (m s–1) - v 1,0 v 1 through interelectrode gap at the leading edges of both electrodes (m s–1) - x distance from the electrode surface (m) - gas volumetric flow ratio - 20 at segment pair 20 - specific surface resistivity ( m2) - t at top of electrode ( m2) - p for bubble-free solution ( m2) - b at bottom of electrode ( m2) - thickness of Nernst bubble layer (m) - 0 ath=0 (m) - 0,i 0 ati - voidage - x,0 atx andh=0 - 0,0 voidage at the leading edge of electrode wherex=0 andh=0 - 0,0 ati b - 0,0 ati=i t - ,h voidage in bulk of solution at heighth - ,20 voidage in bubble of solution at the leading edge of segment pair 20 - lim maximum value of 0,0 - overpotential (V) - a anodic overpotential (V) - c cathodic overpotential (V) - h hyper overpotential (V) - h,a anodic hyper overpotential (V) - h,c cathodic hyper overpotential (V) - fraction of electrode surface area covered by of bubbles - a for anode - c for cathode - resistivity of solution ( m) - p resistivity of bubble-free solution ( m)  相似文献   

13.
Electrolysis of a 22 wt % NaOH solution has been carried out in a vertical tall rectangular cell with two segmented electrodes. The ohmic resistance of the solution between a segment pair has been determined as a function of a number of parameters, such as, current density and volumetric rate of liquid flow. It has been found that the ohmic resistance of the solution during the electrolysis increases almost linearly with increasing height in the cell. Moreover, a relation has been presented describing the voidage in the solution as a function of the distance from the electrodes and the height in the cell.Notation A e electrode surface area (m2) - a s parameter in Equation 12 (A–1) - b s parameter in Equation 12 - d distance (m) - d ac distance between the anode and the cathode (m) - d wm distance between the working electrode and an imaginary separator (m) - F Faraday constant (C mol–1) - h height from the leading edge of the working electrode corresponding to height in the cell (m) - h e distance from the bottom to the top of the working electrode (m) - h s height of a segment of working electrode (m) - I current (A) - I 20 current for segment pair 20 (A) - I 1–19 total current for the segment pairs from 1 to 19 inclusive (A) - I x-19 total current for the segment pairs fromx to 19 inclusive (A) - i current density A m–2 - N s total number of gas-evolving pairs - n 1 constant parameter in Equation 8 - n a number of electrons involved in the anodic reaction - n c number of electrons involved in the cathodic reaction - n s number of a pair of segments of the segmented electrodes from their leading edges - Q g volumetric rate of gas saturated with water vapour (m3 s–1) - Q 1 volumetric rate of liquid (m3 s–1) - R resistance of solution () - R 20 resistance of solution between the top segments of the working and the counter electrode () - R p resistance of bubble-free solution () - R p,20 R p for segment pair 20 () - r s reduced specific surface resistivity - r s,0 r s ath=0 - r s,20 r s for segment pair 20 - r s, r s for uniform distribution of bubbles between both the segments of a pair - r s,,20 r s, for segment pair 20 - S b bubble-slip ratio - S b,20 S b at segment pair 20 - S b,h S b at heighh in the cell - T temperature (K) - V m volume of 1 mol gas saturated with water vapor (m3 mol–1) - v 1 linear velocity of liquid (m s–1) - v 1,0 v 1 through interelectrode gap at the leading edges of both electrodes (m s–1) - W e width of electrode (m) - X distance from the electrode surface (m) - Z impedance () - Z real part of impedance () - Z imaginary part of impedance () - resistivity of solution ( m) - p resistivity of bubble-free solution ( m) - gas volumetric flow ratio - 20 at segment pair 20 - s specific surface resistivity ( m2) - s, p s for bubble-free solution ( m2) - thickness of Nernst bubble layer (m) - 0 ath=0 (m) - voidage - x,0 atx andh=0 - 0,0 voidage at the leading edge of electrode wherex=0 andh=0 - ,h voidage in bulk of solution at heighth - 20 voidage in bubble of solution at the leading edge of segment pair 20  相似文献   

14.
To elucidate the mechanism of electroless plating solutions with formaldehyde as the reductant, the anodic oxidation of formaldehyde in alkaline medium was studied. The influence of electrode material, pH and potential was investigated. The experimental results can be explained by a mechanism in which methylene glycol anion (CH2OHO) is dehydrogenated at the electrode surface, yielding adsorbed hydrogen atoms. The atomic hydrogen can either be oxidized to water or be desorbed as a gas. Kinetic rate laws for these two reactions are given. Electroless copper, platinum and palladium solutions behave according to the mechanism.Nomenclature E applied potential - E a activation energy of adsorption - E d activation energy of desorption (=–H+E a) - E eq equilibrium potential of the reversible hydrogen reaction at a given pH - F Faraday's constant - –H heat of adsorption - i 0 apparent exchange current density for the reversible hydrogen reaction - i 0 exchange current density for the reversible hydrogen reaction - k rate constant for the desorption of hydrogen - L s heat of atomization - R gas constant - T absolute temperature - 7 rate of oxidation of hydrogen atoms - 8 rate of desorption of hydrogen - transfer coefficient (0.5) - overpotential (=E–E eq) - fraction of the surface covered by hydrogen atoms - M work function of metal M - potential of the outer Helmholtz layer relative to the bulk of the electrolyte  相似文献   

15.
This paper deals with the theoretical potential distribution within a flow-by parallelepipedic porous electrode operating in limiting current conditions in a two-compartment electrolytic cell. The model takes into account the influence of the counter-electrode polarization and of the separator ohmic resistance. The results show that the design of the porous electrode requires the knowledge of the solution potential distribution within the whole cell volume.Nomenclature a c specific surface area per unit volume of electrode - C 0 entrance concentration (y=0) - C s exit concentration (y=y 0) - E electrode potential (= M S ) - E o equilibrium electrode potential - F Faraday number - i current density - mean mass transfer coefficient - K parameter [a ea zFi oa/(a RT)]1/2 - L porous electrode thickness - n number of terms in Fourier serials - P specific productivity - Q volumetric flow-rate - mean flow velocity based on empty channel - V constant potential - V R electrode volume - x thickness variable - X conversion - y length variable - y 0 porous electrode length - z number of electrons in the electrochemical reaction Greek symbols parameter - parameter - ionic electrolyte conductivity in pores - S solution potential - M matrix potential ( M = constant) - parameter [=n/y 0 - parameter [=+K] - overpotential Suffices a anodic - c cathodic - eq equilibrium - s separator - S solution  相似文献   

16.
Experimental distributions of the solution potential in flow-through and flow-by porous electrodes of nickel foam operating in limiting current conditions are presented. These are in good agreement with the corresponding theoretical distributions. In the case of a flow-by configuration used in a two-compartment cell, the experiments confirm the validity of the models, presented in Part III, which take into account the presence of a separator (ceramic porous diaphragm or ion exchange membrane).Nomenclature a e specific surface area per unit volume of electrode - C 0 entrance ferricyanide concentration (y=0) - D molecular diffusion coefficient of ferricyanide - E e cathode potential - F Faraday number - mean (and local) mass transfer coefficient - L electrode thickness - L s-L separator thickness - m number of sheets of foam in a stack - n number of terms in Fourier series - Q volumetric flow-rate - r s ohmic specific resistance of the separator - mean flow velocity based on empty channel - V constant potential - X conversion - x coordinate for the electrode thickness - y coordinate for the electrode length - y 0 length of the porous electrode - z number of electrons in the electrochemical reaction Greek symbols parameter - parameter - ionic electrolyte conductivity - sc solution potential in the pores of the cathode - M matrix potential ( sc = constant) - parameter [=n/y 0] - electrolyte density - mean porosity - kinematic viscosity - E c potential drop in the porous cathode - potential drop defined in Fig. 5 Indices c cathodic - o electrolyte alone - s separator  相似文献   

17.
The rectification behaviour of three metal ion–metal interfaces and 38 concentration cells was studied. The rectification in AlAl3+Al was 35% (–0.4 to +0.80 V d.c.) between 2.0–5.0 V a.c. and for ZnZn2+ Al3+Al cell was 20% (+0.20 to –0.30 V d.c.). Its negative d.c. potential showed some similarity to a tunnel diode. 20% rectification was obtained when each of Al, Zn, Mg half-cell was coupled with I, I2Pt half-cell and Al half-cell was coupled with Fe3+, Fe2+Pt half-cell. When the Zn half-cell was associated with Cr3+, Cr2O7 2–Pt half-cell the rectification was 15%, whereas the rectification in all other concentration cells varied from 1 to 12%. The possibility of obtaining much higher percentage of rectification can be explored in a large number of other metal ion–metal interfaces and concentration cells which can be assembled in a similar manner using the table of standard reduction potentials. The characteristics of a concentration cell can be varied by change in concentration of metal ion, redox ratio, variation of pH, temperature, effect of different additives to the cell solution, irradiation of electrode surface etc. Consequently, it will affect the percentage of rectification which may be of some use in commercial applications.  相似文献   

18.
Gas evolution during electrode reactions has several effects on the electrode behaviour. One of these effects is the nonuniform increase of the resistivity of the electrolyte with the resultant increase of IR drop through the solution and the distortion of current distribution. Calculations of these effects are presented for an electrode built of vertical blades. This geometry has the peculiarity that it allows the inclusion of linear polarization and gas effects in the treatment, without the necessity to use numerical or approximate solutions of the differential equations. It is shown that the system parameters can be combined into a single dimensionless parameter to describe those aspects of the electrode behaviour which depend on the gas evolution. The parameters examined include the geometry of the electrode, the polarization resistance, gas bubble rise velocity, and solution resistivity. Expressions are given for optimization of the electrode geometry to achieve minimum overpotential.Nomenclature b Polarization resistance ( cm2) - C Constant, =RT( + t)/lPtFs (A–1cm) - E(x) Potential of the solution at pointx (V) - f av Average volume fraction of gas (dimensionless) - (fy) Volume fraction of gas at heighty (dimensionless) - f(Y) Volume fraction of gas at reduced heightY (dimensionless) - F Faraday number (coulomb mol–1) - h Height of the electrode (cm) - i Nominal current density of the electrode =I T/hw (A cm–2) - i(y) Local electrode current density at heighty (A cm–2) - i(Y) Local electrode current density at reduced heightY (A cm–2) - i f(x) Faradaic current density at pointx (A cm–2) - i f(X) Faradaic current density at reduced lengthX (A cm–2) - i f,av Average faradaic current density in the slot=I s/2hl(Acm–2) - I s Total current entering one slot (A) - I T Total current flowing to the electrode (A) - I(x) Current flowing in the solution phase of one slot at pointx (A) - k Constant, = (2/b)1/2 (cm–1) - K Dimensionless parameter =hRT(2/b)1/2/4lPzFs, or = 1–(1–iCh)1/4 - l Horizontal length of the slot (cm) - n Number of slots on the electrode (dimensionless) - p Pressure of gas liberated on the electrode (assumed to be independent of height) (atm) - R Universal gas constant (cm3 atm K–1 mol–1) - s Bubble rise velocity (cm s–1) - t Thickness of the blades (cm) - T Temperature of the gas (K) - dV(y) Volume of gas present in a volume element of the slot (cm3) - w Width of the electrode (cm) - x Horizontal distance from the back plate (cm) - X Reduced horizontal distance =x/l (dimensionless) - y Vertical distance from the bottom of the electrode (cm) - Y Reduced vertical distance =y/h (dimensionless) - z Number of Faradays needed to produce one mole of gas (mol–1) - Width of a slot (blade spacing) (cm) - Measured overpotential of the electrode =(l)(V) - (x) Overpotential at pointx (V) - Resistivity of gas free electrolyte ( cm) - (y) Resistivity of gas filled electrolyte at, heighty ( cm).  相似文献   

19.
A membrane covered amperometric l-amino acid electrode is described, employing l-amino acid oxidase immobilized on a Pt disc electrode with rabbit albumin and glutaraldehyde. The electrode response to a range of l-amino acids and a theoretical treatment for the rate determining step are presented. Results are also given for the application of the electrode in monitoring beer fermentations. Appropriate amino acid utilisation is vital for both yeast cell growth and beer flavour development.List of symbols A electrode area - D diffusion coefficient - e reduced enzyme concentration - e total enzyme concentration - F Faraday constant - i electrode current - iD l/A - I l/kME - j flux - L thickness of the electrolyte layer - L M thickness of the membrane - kcat rate constant for enzyme/substrate reaction - k rate constant for electrode reaction - kME electrochemical rate constant for the enzyme reaction - kS mass transfer rate constant for substrate in membrane - K membrane constant - K s partition coefficient of substrate in membrane - KM Michaelis constant - n number of electrons S substrate - IiD/[S] - y (–1 – 1)/[S]  相似文献   

20.
The volume fraction of gas bubbles in a vertical cell with a separator was evaluated on the basis of the Bruggemann equation by taking into account the increase in velocity of the rising gas bubbles when fresh solution without gas bubbles is supplied to the bottom of the cell at constant velocity. This enhancement of the velocity results from an increase in the volume of gases evolving at the working electrode. The following three cases for overpotential at the working electrode were considered: no overpotential, overpotential of the linear type and of the Butler-Volmer type. The volume fraction, h , at the top of the cell was expressed as a function of the dimensionless height of the cell and kinetic parameters. The total cell resistance can be expressed by {(2/5 h )[1– h )–3/2–1+ hD;]+µ}1 d 1/wh, where 1 is the resistivity of the solution without gas bubbles,d 1 the interelectrode distance,w the cell width,h the cell height and the parameter involving overpotential and resistance of the separator. It was found that there is an optimum value of the interelectrode distance. The optimum value is about a quarter of the value for the case of constant gas rise velocity, which corresponds to a closed system.Nomenclature b linear overpotential coefficient - C proportionality constant given by Equation 2 - d 1 interelectrode distance - d 2 thickness of the separator - F Faraday constant - h height of the cell - i current density - l total current - t 0 exchange current density - k parameter given byd 1(z)1/2 - n number of electrons transferred - p gas pressure - r dimensionless cell resistance defined by Equation 16 - R gas constant - R t total cell resistance - T temperature - u auxiliary function defined by Equation 37 - v solution velocity in the cell - v 0 solution velocity at the bottom of the cell - v h solution velocity at the top of the cell - V voltage at the working electrode - V eq voltage at the working electrode when no current flows - w width of the electrode - y axis in the vertical direction from the bottom of the cell - z dimensionless variable fory, defined by Equation 8 - z h dimensionless variable forh, defined by [C(V– V eq/(1 d 1 v 0]h - anodic transfer coefficient in the Butler-Volmer equation - volume fraction of gas bubbles in the cell - h volume fraction of gas bubbles at the top of the cell - dimensionless cell voltage, given by Equation 38 - Butler-Volmer overpotential - Butler-Volmer overpotential when current density,I/wh, flows through the electrode, as described in Equation 42 - µ parameter representing either µS, µS + µL or µS + µBV - µBV ratio defined by Equation 41 - µL ratio defined byb/(1 d 1) - µS ratio defined by 2 d 2/1 d 1 - 1 resistivity of the solution phase without gas bubbles - 1(y) resistivity of the solution phase with gas bubbles at levely - 2 resistivity of the separator - kinetic parameter in the Butler-Volmer equation, given by Equation 39  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号