首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在本文研究中,通过干粉模压成型法进行SiC多孔预制坯的制备,通过分析粘结剂种类、用量对预制坯孔隙率的影响,以及对不同孔隙率SiC预制坯制备所得的AlSiC复合材料热物理性能的影响研究,得出结论通过控制SiC预制坯的孔隙率,就可以得到符合ICBT要求的AISiC复合材料。  相似文献   

2.
本文采用无压浸渗法制备了SiC/Al复合材料,研究了造孔剂含量对多孔预制体孔隙率的影响。结果表明:随着造孔剂加入量的增加,孔隙率增加;但当造孔剂含量大于20%时,多孔预制体的孔隙率趋于48%左右。  相似文献   

3.
采用SiC微粉为骨料,聚碳硅烷为粘结剂,混合后溶于THF中干燥过筛,经模压成型后于1000℃保护气氛下低温烧结制备SiC多孔陶瓷。运用XRD、SEM及孔隙率测定手段对陶瓷样品的物相结构、微观形貌及孔隙率进行研究,考察了不同聚碳硅烷含量对SiC多孔陶瓷抗弯强度、线收缩率及气孔率的影响。结果表明,随着聚碳硅烷含量的增加,SiC多孔陶瓷的线收缩率和失重比均增加,抗弯强度和显气孔率均先增加后下降,抗弯强度在聚碳硅烷含量为13%时达到最大值为58.45MPa,开口气孔率在PCS含量为5%时达到最大值为37.2%。  相似文献   

4.
黎阳  张诚  李仕勇 《中国陶瓷》2012,(5):49-51,79
分别以平均粒径为10μm和20μm的两种规格碳化硅(SiC)粉末为原料、聚碳硅烷(PCS)为粘结剂,通过包混、过筛、模压成型、1000℃热解等工序制备了SiC多孔陶瓷,研究了PCS含量对SiC多孔陶瓷微观形貌、线收缩率、孔隙率与抗弯强度的影响,并对两种规格粉末制备的SiC多孔陶瓷性能进行了对比。结果表明:随着PCS含量的增加,两种规格粉末制备的SiC多孔陶瓷微观形貌都逐渐变得致密,当PCS含量为13%时,两种规格粉末制备的多孔陶瓷都出现了微观裂纹。随着PCS含量的增加,两种规格粉末制备的SiC多孔陶瓷孔隙率都逐渐降低,线收缩率都逐渐增大,抗弯强度先增大后降低,在PCS含量为10%时,平均粒径为10μm与20μm的SiC粉末制备的多孔陶瓷抗弯强度取得最大值,分别为31.6MPa与29.0MPa。  相似文献   

5.
建立了C/C预制体孔隙率与C/SiC复合材料组成的关系模型,并通过表征不同孔隙率的C/C预制体气相硅浸渗制备的C/SiC复合材料的组成和力学性能对模型进行了验证。研究发现,实验结果与模型预测结果基本一致。随着C/C预制体孔隙率的增大,C/SiC复合材料的密度出现先上升后下降的规律,力学性能也遵从同样的规律。XRD分析和相含量测试结果均表明复合材料的相含量与模型预测结果基本一致。实验结果与模型预测结果产生偏差的主要原因是裂解碳反应不完全。  相似文献   

6.
利用激光选区烧结(SLS)技术制备多孔SiC_((w))/Si_3N_4陶瓷素坯,对素坯进行冷等静压(CIP)处理以改善其性能,探索CIP压强对SLS制备的多孔SiC_((w))/Si_3N_4陶瓷性能的影响。以Si_3N_4为原料,加入10%(质量分数)的SiC晶须,制备出适用于SLS的复合粉末,利用最佳SLS成型参数打印4组素坯,分别进行压强为100、150、200和250 MPa的CIP处理,经排胶及高温气氛烧结后得到多孔SiC_((w))/Si_3N_4陶瓷。结果表明:随着CIP压强增大,素坯孔隙率减小,抗弯强度增大,而陶瓷的收缩率增大,孔隙率减小,抗弯强度增大。SiC_((w))/Si_3N_4多孔陶瓷在250 MPa下性能最优,其Z方向收缩率、孔隙率和抗弯强度分别达到35.32%、41.19%和18.6 MPa。  相似文献   

7.
以针刺网胎无纬布为预制体,采用化学气相渗透(CVI)、压力浸渍树脂/炭化(PIC)及反应熔体浸渗法(RMI)等组合工艺快速制备C/C-SiC复合材料。研究了C/C多孔体的高温热处理温度对C/C-SiC复合材料微观结构和热学性能的影响,结果表明:多孔体经高温热处理后密度有所减小而孔隙率增大;相较于1800℃热处理,多孔体经2200℃热处理后制备的C/C-SiC复合材料密度更大(ρ=2.12g/cm3),孔隙率更低(η=2.7%),SiC基体含量更高(ω=41.11%);C/C-SiC复合材料的比热容和平均热膨胀系数随着温度的升高而增大,而热扩散系数和导热系数随着温度的升高不断减小;多孔体经2200℃热处理后制备的C/C-SiC复合材料X-Y向具有更大的导热系数和更小的热膨胀系数,其室温下的导热系数为83.120W/(m·K),室温~1000℃的平均热膨胀系数为1.608×10-6/℃。  相似文献   

8.
采用热模压辅助聚合物先驱体浸渍裂解工艺制备了国产近化学计量比SiC纤维增强SiC陶瓷基复合材料,通过阿基米德排水法和SEM技术对SiC/SiC复合材料致密化过程进行表征,采用弯曲强度、拉伸强度和断裂韧性对SiC/SiC复合材料力学性能和力学行为进行评价。研究表明,热模压压力是影响材料结构和性能的重要因素,热模压在提升材料致密度的同时,亦造成纤维的损伤。随着热模压压力的增加,SiC/SiC复合材料力学性能先增加后降低。热模压压力适中时,致密度增加因素占优,材料力学性能较为优异;热模压压力较大时候,热模压操作对纤维性能的损伤因素逐渐凸显,基体致密化和纤维损伤两种作用机制相当。  相似文献   

9.
以水基轧膜工艺制备出了不同粘结剂含量的NiO/氧化钇稳定氧化锆(YSZ)固体氧化物燃料电池多孔阳极材料。研究了粘结剂含量和制备工艺条件等对多孔阳极微结构和性能的影响。实验结果表明:轧膜坯体的烧结温度对NiO/YSZ阳极烧结体的孔隙率有着决定的影响;为获得较高孔隙率和一定孔径分布的阳极烧结体,轧膜生坯的烧结温度应不超过1450℃。此外,粘结剂含量对轧膜生坯的烧结行为及烧结体的性能也有明显的影响,在相同的烧结温度下,高粘结剂含量阳极烧结体的孔隙率和孔径范围明显高于低粘结剂含量的烧结体,其中,粘接剂含量5%的生坯烧结后得到的NiO/YSZ阳极材料具有较好的综合性能;此外,NiO/YSZ材料还原后所得Ni/YSZ金属陶瓷多孔阳极的电导率随试样烧结温度的升高而升高,随测试温度升高而降低,800℃下的其电导率可达150S/cm。  相似文献   

10.
以无涂层、C+SiC复合涂层处理的炭布/网胎预制体,分别经过化学气相渗透、树脂浸渍/炭化制备了3种C/C坯体,熔融渗硅后获得不同的C/SiC复合材料,对其组织结构和导热性能进行了研究。结果表明:热解炭坯体的C/SiC复合材料存在集中分布的Si,混合基体炭的C/SiC中可见较多微裂纹,C+SiC涂层的材料中残留Si含量少,基体组织均匀;热解炭坯体的C/SiC复合材料热扩散率和导热系数最大;混合基体炭的坯体,纤维经过C+SiC涂层,可明显提高材料的热扩散率和导热系数,且随温度的升高,导热系数的下降速率增大。  相似文献   

11.
提出了溶胶–凝胶孔道构建–反应熔渗制备新方法,首先通过溶胶凝胶方法在纤维预制体中引入B_4C–C多孔体,获得C_f/B_4C–C多孔预成型体结构;在此基础上,结合反应熔渗Si–Zr合金,获得C_f/ZrB_2–ZrC–SiC超高温陶瓷基复合材料。研究了C_f/B_4C–C多孔预成型体结构对RMI过程和材料性能的影响,并揭示了孔隙结构对基体分布和界面损伤及复合材料性能的影响规律。结果表明:通过灵活调控C_f/B_4C–C孔隙结构可实现复合材料中ZrB_2–ZrC–SiC基体分布改善和(PyC–SiC)_2界面损伤缓解,大幅提升材料性能。当预成型体孔隙结构为25.9%和58.0μm时,制备的C_f/ZrB_2–ZrC–SiC复合材料基体可均匀分布于纤维束间和束内,同时纤维能得到良好的保护,材料表现出最优的力学性能(抗弯强度231 MPa)。  相似文献   

12.
多孔碳化硅陶瓷的原位氧化反应制备及其性能   总被引:1,自引:0,他引:1  
以SiC为陶瓷骨料,Al2O3作为添加剂,通过原位氧化反应制备了Sic多孔陶瓷,并对其氧化反应特性及性能进行了研究.结果表明:在1 300~1 500℃,随烧结温度的升高,SiC的氧化程度增加,SiC多孔陶瓷的强度逐渐增加,但开口孔隙率有所降低.莫来石相在1 500℃开始生成·当烧结温度升高到1 550℃时,莫来石大量生成,得到了孔结构相互贯通且颈部发育良好的莫来石结合SiC多孔陶瓷;由于在SiC颗粒表面上覆盖了致密的莫来石层,SiC的氧化受到抑制,开口孔隙率因而升高,SiC多孔陶瓷的强度因莫来石的大量生成而增加.由平均粒径为5.0um的SiC,并添加20%(质量分数)Al2O3,经1 550℃烧结2h制备的SiC多孔陶瓷具有良好的性能,其抗弯强度为158.7MPa、开口孔隙率为27.7%.  相似文献   

13.
本文从SiC和C/SiC复合材料的制备工艺出发,综述了各种制备SiC及C/SiC复合材料反射镜镜坯工艺的机理、优缺点和国内外研究现状。并对SiC及C,SiC复合材料用作反射镜镜坯提出了一些建议。  相似文献   

14.
以三维针刺碳毡作为预制体,先采用树脂单向加压浸渍-热解工艺制备出C/C多孔体,然后采用反应熔体浸渗法将Si-Mo合金浸渗到C/C多孔体中制备C/SiC-MoSi_2复合材料。对C/SiC-MoSi_2复合材料的物相组成、显微结构以及力学性能进行了研究。结果表明,该复合材料由C、SiC、MoSi_2和Si组成;生成的SiC和MoSi_2分布在纤维束间和胎网层,Si-Mo合金并未渗入纤维束内部,束内碳纤维未受损伤;残余Si含量仅为4.2%,且被分散成小块。C/SiC-MoSi_2复合材料的弯曲断裂行为可分为三个阶段,从材料的断口形貌中可以观察到纤维的脱粘拔出、基体的台阶状断裂以及裂纹偏转和分叉,表明该复合材料呈现出塑性断裂特征。  相似文献   

15.
以碳化硅及碳酸钙为造孔剂,采用发泡–注凝成型结合添加造孔剂法制备了具有大孔–介孔复合孔结构的莫来石多级孔陶瓷,研究了SiC加入量对莫来石多孔陶瓷常温物理性能和高温隔热性能的影响。结果表明:以莫来石粉体为主要原料,以CaCO_3和SiC为造孔剂,采用发泡结合添加造孔剂法可制备具有较高闭气孔率的莫来石多孔陶瓷;当SiC加入量为4%(质量分数)时,所制备试样的导热系数最低,其孔隙率约为69.9%。  相似文献   

16.
黎阳 《中国陶瓷》2012,(10):42-45
以平均粒径为20μm的SiC粉末为原料、亚微米SiC微粉为添加相、聚碳硅烷(polycarbosilane,PCS)为黏结剂,通过混粉、模压、热氧化不熔化处理、烧成等工序制备了SiC多孔陶瓷。研究了亚微米SiC微粉添加量对SiC多孔陶瓷微观形貌、线收缩率、孔隙率和抗弯强度的影响。结果表明:随亚微米微粉添加量的增加,多孔陶瓷微观裂纹逐渐减少直至消失,孔隙率先急剧增大后逐渐减小,线收缩率先急剧减小后逐渐增大,抗弯强度先增大后减小;在PCS含量为10%、15%与20%时,对应亚微米SiC微粉添加量为15%、30%与40%时,抗弯强度获得最大值分别为52.1MPa、54.6MPa与62.4MPa,与未添加亚微米微粉时相比,提高幅度分别达180%、285%与392%。  相似文献   

17.
碳化硅-线性低密度聚乙烯导热复合材料的制备与性能   总被引:2,自引:0,他引:2  
用粉末共混-模压成型法制备碳化硅/线性低密度聚乙烯(SiC/LLDPE)导热复合材料,探讨了SiC和偶联剂处理对复合材料导热性能和力学性能的影响.结果表明复合材料的导热系数随SiC用量的增加而增加,当SiC的体积分数为30.4%时,复合材料的导热系数为0.8233 W/(m·K),为纯LLDPE的2倍多;拉伸强度则随SiC填充量的增加而显著下降.当SiC填充量为一定值时,表面改性使SiC在LLDPE基体中的分散状态得到改善,拉伸强度和导热性能得到进一步提高,当NDZ-105用量为3%质量分数时,复合材料性能最佳.SiC的加人使LLDPE材料由韧性断裂转变为脆性断裂,SiC的加入影响了LLDPE的熔融温度和结晶度.  相似文献   

18.
连续碳化硅纤维增强碳化硅陶瓷基复合材料(SiC/SiC)具有低密度、耐高温、低氚渗透率和优异的辐照稳定性的优点,在航空、航天、核能等领域具有广泛的应用前景。本文针对PIP工艺制备SiC/SiC复合材料周期长、孔隙率较高及易氧化的问题,通过料浆预浸料工艺在基体中引入氧化铝陶瓷形成SiC/Al2O3-SiC复相基体复合材料,并对复合材料制备工艺过程、微观形貌及力学性能进行系统表征。分析结果表明,SiC/Al2O3-SiC复相基体复合材料制备周期较传统PIP工艺大幅度缩短,且复合材料孔隙率明显降低,从11.6%左右降低至6%,拉伸强度为316.5MPa,提升了12.3%,弯曲强度与SiC/SiC相当,但层间剪切强度较低,仅为16.3MPa,有待进一步提高。  相似文献   

19.
以d_(50)=247. 0μm的SiC颗粒为主原料,分别加入12. 5%、17. 5%、22. 5%(w)的混合溶胶(由正硅酸乙酯和铝溶胶按1∶6质量比配成),或分别加入5%、10%、15%(w)的混合微粉(由d_(50)=20. 9μm的SiC微粉和α-Al_2O_3微粉按质量比1∶2. 5配成)作为原位莫来石结合的添加剂,并外加12. 5%(w)的d_(50)=28. 1μm的木炭粉为造孔剂,采用模压成型,在1 400℃烧结3 h制备多孔SiC陶瓷膜支撑体。研究了两种添加剂对多孔陶瓷膜支撑体显气孔率、抗弯强度、孔径大小分布和透气性能的影响,并分析了试样的物相组成和断口形貌。结果表明:试样在烧结后均形成了莫来石结合相;随着溶胶添加量的增加,试样抗弯强度呈增长趋势,孔隙率逐渐减小;随着微粉添加量的增加,试样的孔隙率逐渐减小,抗弯强度呈先增大后减小的变化趋势。添加溶胶制备的莫来石结合多孔SiC支撑体具有更好的贯通气孔结构和力学性能,其中,添加17. 5%(w)溶胶的试样具有良好的力学性能和透气性能,其抗弯强度达到28. 2 MPa,孔隙率为37. 2%,平均孔径为89. 6μm,阻力降为41. 0 Pa。  相似文献   

20.
以煅烧α-Al2O3为原料,稀土氧化镧(La2O3)为添加剂,羧甲基纤维素为成型粘结剂,通过混料、困料、研磨、模压成型、高温烧结等工序制备了氧化铝多孔陶瓷,研究了烧结温度及La2O3添加量对氧化铝多孔陶瓷的线收缩率、体积密度、孔隙率、抗折强度和微观形貌的影响。结果表明:在相同烧结温度下,随稀土添加量的增加,多孔陶瓷的体积密度、线收缩率与抗折强度均降低,而孔隙率则逐渐增加。微观形貌与X衍射分析表明,稀土La2O3的加入,抑制了氧化铝颗粒间的烧结,并在高温下与氧化铝反应生成了片状晶体LaAl11O18,片状晶LaAl11O18阻碍了氧化铝晶粒的长大,进而抑制了坯体的收缩,最终使得氧化铝多孔陶瓷具有较高的孔隙率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号