首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The preparation of TiO2 nanofilm was conducted on common glass via the sol–gel process. Glacial acetic acid and diethanolamine were used as inhibitors to prepare acidic and alkaline TiO2 sol, respectively. XRD, SEM, and EDS characterization showed that the film prepared from acidic TiO2 sol had a narrow particle size distribution of 15–30 nm and relatively poor particle crystallization while in the case of the film from alkaline TiO2 sol the nanoparticles were in a wide range of 10–80 nm and well crystallized. The photolysis evaluation through MO degradation revealed that the film from acidic sol possessed apparently better photocatalytic activity than that from alkaline sol. Heat treatment with longer time led to a 50% increase of the photocatalytic activity for the film.  相似文献   

2.
An innovative SiO2-PO43−-TiO2 photocatalyst is presented which is able to bond TiO2 to Raschig rings (RR). Evidence for the formation on the catalyst surface of PO stretching bands near 1200–1250 cm−1 is presented by FTIR spectroscopy. The TiO2 Degussa P25 on the catalyst surface (RR) was further characterized by high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction showing that the composite catalyst prepared at 500 °C does not alter the particle size or crystallographic composition of the TiO2 Degussa P25 particles. The Ti- and P-distribution of the catalyst surface overlayers was obtained by Ar-sputtering eroding up to 100 topmost catalyst layers. By atomic force microscopy (AFM) the root mean square roughness (Rq) or rugosity of 771 nm and an average height of the catalyst layer of 1.52 μm were found on the glass surface. The root mean square roughness Rq varies very little in value before and after the photocatalysis indicating that the sample porosity is conserved during 4-CP photodegradation. The disappearance kinetics of 4-chlorophenol (4-CP) on the SiO2-PO43−-TiO2 composite occurred within 15 min and was faster than the 45 min needed with suspensions of TiO2 Degussa P25 (1 g L−1). The SiO2-PO43−-TiO2 photocatalyst was able to degrade repetitively 4-CP solutions without loss of activity. The effect of the light intensity, oxidant concentration and 4-CP concentration on the photodegradation kinetics was investigated and is reported in this study.  相似文献   

3.
Nanoporous Co3O4 hierarchical nanoflowers have been prepared through sequential process of a hydrothermal reaction and heat treatment. These nanoflowers consisting of a great deal of Co3O4 nanofibers have bimodal pore structures and Brunauer–Emmett–Teller surface area of 34.61 m2/g. The temperature dependence curves of magnetization in zero-field-cooled and field-cooled exhibit main antiferromagnet and weak ferromagnet of Co3O4 nanoflowers at blocking temperature of 34 K, respectively. In addition, analysis of their optic properties obviously indicates red shift of absorption peaks, exhibiting quantum-confined effect and traits of semiconductor.  相似文献   

4.
The present work investigates the formation of nanotubes by anodizing titanium at 20 V in glycerol containing either 0.175 M or 0.35 M NH4F. A photoresist-masking method of thin Ti films allows to use SEM cross-sections to directly obtain information on oxide morphology, layer thickness and metal substrate loss. Therefore not only features of the initial growth stages but also oxide expansion factors can accurately be determined. The expansion factors were found to be 2.4 for the initial formation of a barrier layer, 1.7–1.9 during pore initiation and 2.7–3.1 as the main nanotubes develop. These values (>2.6) suggest substantial contribution to steady state tube growth by a plastic oxide flow mechanism. Combined with RBS efficiency measurements the method presented here allows facile and direct investigation of the mechanism of pore/tube formation.  相似文献   

5.
(K0.5−xLix)Na0.5(Nb1−ySby)O3 (KLNNSxy, x = 0–4 mol% and y = 0–8 mol%) lead-free piezoelectric ceramics were prepared by the conventional mixed oxide method. The denser microstructure and better electrical properties of the ceramics were obtained as compared to the pure K0.5Na0.5NbO3 ceramic. The temperature stability of the electrical properties of the ceramics was also investigated. The experimental results show that the KLNNS2.5–5 ceramic exhibits good electrical properties (kp  49%, k31  30% and , tan δ  0.019), and possesses good temperature stability in the temperature range of −40 to 85 °C. The related mechanisms for improved electrical properties and temperature stability were also discussed. Moreover, buzzers based on the KLNNS2.5–5 ceramic have been fabricated and their characterization is presented. These results show that the KLNNS2.5–5 ceramic is a promising lead-free material for practical application in buzzers.  相似文献   

6.
By addition of LiF-containing sintering additives to commercial BaTiO3 powder, more than 98% of the theoretical density was reached at a sintering temperature of 900 °C both on powder compacts and laminates. Dielectric measurements were performed on ceramic samples in the temperature and frequency ranges from −20 °C to 125 °C and from 103 to 106 Hz, respectively. High relative permittivity (r  3160) and low dielectric loss (tan δ  0.014) were measured for tapes of the favoured material. The breakdown strength for tapes with a thickness of about 80 μm is 30 kV/mm. The microprobe analysis showed, that no interfacial reaction between the dielectric layer and the Ag-electrode had occurred.The newly developed barium titanate ceramics completely densifying at 900 °C turned out to be promising for integration of buried capacitors in LTCC multilayers.  相似文献   

7.
Glass (GFC) and silica (SFC) fibre reinforced silica matrix composite foams with 84–90% porosity content have been developed through slurry-based processing, involving random dispersion of 10 wt.% fibres with aspect ratios of >1000 in hydrophobized silica-based suspensions, and direct foaming for air entrapment. Fibre entanglement has not been found either in the suspensions or in the sintered composite foams. Microstructural and mercury porosimetry studies of the composite foams have shown a trimodal size distribution with small (4–8 μm), medium (40–200 μm), and large (1 mm or more) pores. The pores appear spherical and interconnected, with the fibres embedded in cell-walls or struts. The dynamic Young's modulus of the silica-coated GFCs is found to be 3.5 and 5.2 times that of the coated and uncoated monolithic silica foams, respectively, confirming that both fibre-reinforcement and the presence of surface coating are beneficial for increase in stiffness of the composite foams.  相似文献   

8.
Cobalt–silica (Co–SiO2) aerogel coatings were successfully grown on the walls of ceramic monolith channels, thus resulting in structured catalytic wall materials useful for gas–solid reactions. The preparation involved the synthesis in situ of SiO2 gels by the sol–gel hydrolysis and condensation of tetraethylorthosilicate (TEOS), quenching at the gelation point, incorporation of Co by impregnation, and extraction of the solvent by supercritical drying. Characterization of the aerogel-coated monoliths revealed an excellent dispersion and homogeneity of the aerogel and good adherence properties. The catalytic performance of these materials in the ethanol steam reforming reaction addressed to obtain hydrogen was studied at atmospheric pressure by carrying out consecutive cycles at 473–773–473 K with a C2H5OH:H2O  1:3 (molar) mixture and stability tests, and the results were compared with those obtained over monoliths prepared by conventional washcoating methods from Co–SiO2 xerogel. Co–SiO2 aerogel catalytic walls were about four times more active for hydrogen generation at 623 K than conventional monoliths. An unusual rapid activation of aerogel-coated monoliths was attained at 580–590 K, even after several cycles and oxidation treatments at 563–613 K, which was attributed to highly dispersed cobalt particles and higher effective diffusivity of reaction species due to high porosity and larger average pore size. The reproducible low-temperature activation of Co–SiO2 aerogels supported on ceramic monoliths may be useful for the practical application of fuel reformers to the on-site generation of hydrogen from ethanol.  相似文献   

9.
The role of the particle size on the electrochemical properties at 25 and at 55 °C of the LiCr0.2Ni0.4Mn1.4O4 spinel synthesized by combustion method has been determined. Samples with different particle size were obtained by heating the raw spinel from 700 to 1100 °C, for 1 h in air. X-ray diffraction patterns revealed that all the prepared materials are single-phase spinels. The main effect of the thermal treatment is the remarkable increase of the particles size from 60 to 3000 nm as determined by transmission electron microscopy. The electrochemical properties were determined at high discharge currents (1C rate) in two-electrode Li-cells. At 25 and at 55 °C, in spite of the great differences in particle size, the discharge capacity drained by all samples is similar (Qdch ≈ 135 mAh g−1). Instead, the cycling performances strongly change with the particle size. The spinels with Φ > 500 nm show better cycling stability at 25 and at 55 °C than those with Φ < 500 nm. The samples heated at 1000 and 1100 °C, with high potential (E ≈ 4.7 V), elevate capacity (Q ≈ 135 mAh g−1), and remarkable cycling performances (capacity retention after 250 cycles >96%) are very attractive materials as 5V-cathodes for high-energy Li-ion batteries.  相似文献   

10.
Mesoporous nanocrystalline anatase was prepared hydrothermally employing P123 as structure-directing agent. Ethylene glycol was used as a key synthesis parameter to fine tune the morphology, crystal size and pore size of the resultant mesophases. The incorporation of EG in the synthesis gel resulted in the formation of 1–2 μm sphere-like shapes and led to an increase in the specific surface area from 95 to 170 m2/g, decrease in the average pore size from 11 to 4.8 nm, and decrease in the average crystallite size from 17 to 12 nm. These mesophases were used as photocatalysts for the UV degradation of methylene blue and methyl orange. The mesoporous anatase phases photodegraded MB 1.5–3× faster than commercially available P25 and showed limited photocatalytic behavior for methyl orange.  相似文献   

11.
The photoassisted degradation (HPLC-UV absorption), dehalogenation (HPLC-IC) and mineralization (TOC decay) of the flame retardants tetrabromobisphenol-A (TBBPA) and tetrachlorobisphenol-A (TCBPA) were examined in UV-irradiated alkaline aqueous TiO2 dispersions (pH 12), and for comparison the parent bisphenol-A (BPA, an endocrine disruptor) in pH 4–12 aqueous media to assess which factor impact most on the photodegradative process. Complete degradation (2.7–2.8 × 10−2 min−1) and dehalogenation (1.8 × 10−2 min−1) of TBBPA and TCBPA occurred within 2 h of UV irradiation, whereas only 45–60% mineralization (2.3–2.7 × 10−3 min−1) was complete within 5 h for the flame retardants at pH 12 and ca. 80% for the parent BPA. Factors examined in the pH range 4–12 that impact the degradation of BPA were the point of zero charge of TiO2 particles (pHpzc; electrophoretic method), particle or aggregate sizes of TiO2 (light scattering), and the relative number of OH radicals (as DMPO–OH adducts; ESR spectroscopy) produced in the UV-irradiated dispersion. Dynamics of BPA degradation (2.0–2.4 × 10−2 min−1) were pH-independent and independent of particle/aggregate size, but did correlate with the number of OH radicals, at least at pHs 4 to 8–9, after which the rates decreased somewhat at pH > 9 with decreasing adsorption owing to Coulombic repulsive forces between the very negative TiO2 surface and the anionic forms of BPA (pKas ca. 9.6–11.3), even though the number of OH radicals continued to increase at the higher pHs.  相似文献   

12.
The initial rate of hydrogen dissociation was studied as a function of irreversible CO coverage at 353 K on 30 wt.% Pt/carbon catalysts (Pt/C) prepared according to different processes. The Pt/C catalysts exhibit similar Pt dispersion (D  0.07) and mean Pt particles size (dp  16 nm). The turnover frequency (number of hydrogen molecules dissociated per CO-free surface Pt atom) was determined as a function of CO coverage from 0.0 to 0.8. The evolution of TOF as a function of CO coverage is in agreement with the model of CO adsorbing on low coordination sites (edges, corners) and then spreading across the faces to grow islands as Brandt suggested in the past (R.K. Brandt, M.R. Hughes, L.P. Bourget, K. Truszkowska, R.G. Greenler, Surf. Sci. 286 (1993) 15–25). At high CO coverage (0.8), TOF depends on the process by which the Pt/C catalyst was prepared. In particular, a Pt/C elaborated according to a colloidal process exhibits a low sensitivity to CO poisoning with an increase of TOF by one order of magnitude.  相似文献   

13.
Catalytic reduction gasification in the presence of ruthenium(IV) dioxide (RuO2) in supercritical water was used to decompose intractable biomass. The gasification of model biomass samples (glucose, cellulose, and heterocyclic compounds), and low-purity biomass samples obtained from a paper-recycling facility (paper sludge) and from a sewage treatment plant (sewage sludge) were studied. In clear contrast to another catalysts, the RuO2 catalyst completely gasified cellulose to produce mainly hydrogen, methane, and carbon dioxide under various conditions (e.g., 673 K at 30 MPa and 773 K at 50 MPa). As for heterocyclic compounds, nitrogen compounds did not deactivate the RuO2 catalyst; the gasification of carbazole proceeded completely. Furthermore, paper sludge was almost completely decomposed in supercritical water with RuO2 at 723 K.  相似文献   

14.
We have studied the oxidation of carbon monoxide over a lanthanum substituted perovskite (La0.5Sr0.5CoO3−d) catalyst prepared by spray pyrolysis. Under the assumption of a first-order kinetics mechanism for CO, it has been found that the activation energy barrier of the reaction changes from 80 to 40 kJ mol−1 at a threshold temperature of ca. 320 °C. In situ XPS near-ambient pressure (0.2 torr) shows that the gas phase oxygen concentration over the sample decreases sharply at ca. 300 °C. These two observations suggest that the oxidation of CO undergoes a change of mechanism at temperatures higher than 300 °C.  相似文献   

15.
The short, robust and highly ordered TiO2 nanotube arrays (TNAs) electrode was prepared by sonoelectrochemical anodization of titanium in HF–H2O electrolyte solution (referred as short TNAs, STNAs). The self-organized arrays of titania nanotubes of approximately 12–65 nm in diameter and 75–280 nm in length can be synthesized at anodic voltage of 5–20 V. The electron transport process within the STNAs electrode was much favorable in comparison with that for the long TNAs electrode synthesized by conventional magnetic agitation technique (referred as long TNAs, LTNAs), as confirmed by the obviously enhanced photocurrent response of STNAs electrode either in 0.02 M Na2SO4 electrolyte solution or in different concentrations of glucose solution or under different intensities of UV illumination. To investigate their photoelectrochemical applications, degradation of tetracycline, a typical pharmaceutical and personal care products (PPCPs), was carried out using photoelectrocatalytic (PEC) means, comparing with electrochemical (EC) and photocatalytic (PC) processes. The kinetic constant of the PEC process of STNAs electrode was 3.17 times as high as its PC process. The color removal rate of tetracycline by STNAs electrode achieved 81% within 3 h, which was 21% higher than that for LTNAs electrode. In degrading tetracycline, 41% of TOC was mineralized using the STNAs electrode against 23% using LTNAs electrode under similar conditions. Such kind of titania nanotubes will have many potential applications in various areas as an outstanding photoelectrochemical material.  相似文献   

16.
Thermal and mechanical properties of polycrystalline La1−xAxNbO4 (x = 0, 0.005, 0.02 and A = Ca, Sr and Ba) are reported. The materials possess a ferroelastic to paraelastic phase transition close to 500 °C, and the linear thermal expansion is significantly lower (8.6 ± 0.5 × 10−6 °C−1) for the paraelastic phase compared to the ferroelastic phase (15 ± 3 × 10−6 °C−1). The hardness was significantly higher for acceptor doped materials (6 GPa) compared to pure LaNbO4 (3 GPa) due to a significantly smaller average grain size. The fracture toughness of La0.98Sr0.02NbO4, measured by single edge V-notched beam method, was 1.7 ± 0.2 MPa m1/2 independent of temperature up to 600 °C. The ferroelastic properties of the materials were confirmed by non-linear relationships between stress and strain during compression/decompression, a remnant strain after decompression and the presence of ferroelastic domains. The mechanical properties of LaNbO4-based materials are discussed with focus on ferroelasticity, microcracking due to crystallographic anisotropy and pinning of ferroelastic domain boundaries.  相似文献   

17.
Adsorption and decomposition of ethanol on supported Au catalysts   总被引:1,自引:0,他引:1  
The adsorption and reactions of ethanol are investigated on Au nanoparticles supported by various oxides and carbon Norit. The catalysts are characterized by means of XPS. Infrared spectroscopic studies reveal the dissociation of ethanol to ethoxy species at 300 K on all the oxidic supports. The role of Au is manifested in the enhanced formation of ethoxy species on Au/SiO2, and in increased amounts of desorbed products in the TPD spectra. The supported Au particles mainly catalyse the dehydrogenation of ethanol, to produce hydrogen and acetaldehyde. An exception is Au/Al2O3, where the main process is dehydration to yield ethylene and dimethyl ether. C–C bond cleavage occurs to only a limited extent on all samples. As regards to the production of hydrogen, the most effective catalyst is Au/CeO2, followed by Au/SiO2, Au/Norit, Au/TiO2 and Au/MgO. A fraction of acetaldehyde formed in the primary process on Au/CeO2 is converted above 623 K into 2-pentanone and 3-penten-2-one. The decomposition of ethanol on Au/CeO2 follows first-order kinetics. The activation energy of this process is 57.0 kJ/mol. No deactivation of Au/CeO2 is observed during 10 h at 623 K. It is assumed that the interface between Au and partially reduced CeO2 is responsible for the high activity of the Au/CeO2 catalyst.  相似文献   

18.
A nanospheroidal TiO2 mesoporous layer combined with cadmium sulfide (CdS) quantum dots (QDs) as a sensitizer was firstly utilized for solar cell applications, resulting in an efficiency of 1.2% at a 1 sun condition. CdS quantum dots (18 nm) were attached to the TiO2 nanospheroidal electrode by using a chemical bath deposition technique. The influence of surface treatment using dimethyl formamide on the interconnectivity of the TiO2 nanospheroidal electrodes was investigated. The charge transport of TiO2/CdS QDs/electrolyte sandwich-type cells was characterized by electrochemical impedance spectroscopy and the device performance was compared with conventional nanospherical TiO2 (Degauusa P25) electrodes. The electrodes with nanospheroidal morphology showed better device performance than the P25 nanoparticle electrodes primarily due to both better connectivity among nanospheroidal TiO2 particles and larger mesopores, resulting in deeper penetration of the electrolyte in QD-sensitized solar cells.  相似文献   

19.
Fibrous zirconia/alumina composites with different composition were fabricated by piston co-extrusion. After a 3rd extrusion step and sintering at 1600 °C, crack-free composites with a fibre width of 50 μm were obtained for all compositions. The effect of the volume ratio of secondary phase on the mechanical properties was investigated. The Young's modulus of the composites decreased linearly with increasing the zirconia content. The fracture toughness of the composites was improved by introducing fine second phase filaments into the matrix. The maximum fracture toughness of 6.2 MPa m1/2 was attained in the 3rd co-extruded 47/53 vol% zirconia/alumina composite. The improvement in toughness was attributed to both “stress-induced” transformation of zirconia and a crack deflection mechanism due to thermal expansion mismatch between the two phases. Bending strength of the composites was almost the same as that of the monolithic alumina regardless of the composition.  相似文献   

20.
We studied the borohydride oxidation reaction (BOR) by voltammetry for BH4 concentrations between 10−3 M and 0.1 M NaBH4 in 0.1–1 M NaOH for bulk polycrystalline Pt, Ag and alloyed Pt–Ag electrocatalysts. In order to compare the different electrocatalysts, we measured the kinetic parameters and the number of electrons exchanged (faradic efficiency). BOR on bulk Pt is more efficient when the concentration of NaBH4 increases (3e in 1 mM and 6e in 10 mM BH4/0.1 M NaOH). BOR on Pt can occur both in a direct pathway and in an indirect pathway including hydrogen generation via heterogeneous hydrolysis of BH4 and subsequent oxidation of its by-products (e.g. BH3OH and H2). BOR on Ag strongly depends on the pH: improved faradic efficiency is monitored for high pH (2e at pH 12.6 and 6e at pH 13.9 at 25 °C). The BOR kinetics is faster for Pt than for Ag (iPt=0.02 A cm−2, iAg=1.4 10−7 A cm−2 at E=−0.65 V vs. NHE in 1 mM NaBH4/0.1 M NaOH, 25 °C) both as a result from Pt high activity regarding the BH4 heterogeneous hydrolysis and subsequent HOR, above −0.83 V vs. NHE and following direct oxidation of BH4 or BH3OH below −0.83 V vs. NHE. Both Pt–Ag bulk alloys show unique behaviour: the number of electrons exchanged is rather high whatever the BH4 concentration and pH, while the kinetic parameters are quite similar to that of platinum, showing possible synergistic alloying effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号