首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On Shape of Plane Elastic Curves   总被引:1,自引:0,他引:1  
We study shapes of planar arcs and closed contours modeled on elastic curves obtained by bending, stretching or compressing line segments non-uniformly along their extensions. Shapes are represented as elements of a quotient space of curves obtained by identifying those that differ by shape-preserving transformations. The elastic properties of the curves are encoded in Riemannian metrics on these spaces. Geodesics in shape spaces are used to quantify shape divergence and to develop morphing techniques. The shape spaces and metrics constructed are novel and offer an environment for the study of shape statistics. Elasticity leads to shape correspondences and deformations that are more natural and intuitive than those obtained in several existing models. Applications of shape geodesics to the definition and calculation of mean shapes and to the development of shape clustering techniques are also investigated.  相似文献   

2.
We present a variational framework for naturally incorporating prior shape knowledge in guidance of active contours for boundary extraction in images. This framework is especially suitable for images collected outside the visible spectrum, where boundary estimation is difficult due to low contrast, low resolution, and presence of noise and clutter. Accordingly, we illustrate this approach using the segmentation of various objects in synthetic aperture sonar (SAS) images of underwater terrains. We use elastic shape analysis of planar curves in which the shapes are considered as elements of a quotient space of an infinite dimensional, non-linear Riemannian manifold. Using geodesic paths under the elastic Riemannian metric, one computes sample mean and covariances of training shapes in each classes and derives statistical models for capturing class-specific shape variability. These models are then used as shape priors in a variational setting to solve for Bayesian estimation of desired contours as follows. In traditional active contour models curves are driven towards minimum of an energy composed of image and smoothing terms. We introduce an additional shape term based on shape models of relevant shape classes. The minimization of this total energy, using iterated gradient-based updates of curves, leads to an improved segmentation of object boundaries. This is demonstrated using a number of shape classes in two large SAS image datasets.  相似文献   

3.
In this paper concepts from continuum mechanics are used to define geodesic paths in the space of shapes, where shapes are implicitly described as boundary contours of objects. The proposed shape metric is derived from a continuum mechanical notion of viscous dissipation. A geodesic path is defined as the family of shapes such that the total amount of viscous dissipation caused by an optimal material transport along the path is minimized. The approach can easily be generalized to shapes given as segment contours of multi-labeled images and to geodesic paths between partially occluded objects. The proposed computational framework for finding such a minimizer is based on the time discretization of a geodesic path as a sequence of pairwise matching problems, which is strictly invariant with respect to rigid body motions and ensures a 1–1 correspondence along the induced flow in shape space. When decreasing the time step size, the proposed model leads to the minimization of the actual geodesic length, where the Hessian of the pairwise matching energy reflects the chosen Riemannian metric on the underlying shape space. If the constraint of pairwise shape correspondence is replaced by the volume of the shape mismatch as a penalty functional, one obtains for decreasing time step size an optical flow term controlling the transport of the shape by the underlying motion field. The method is implemented via a level set representation of shapes, and a finite element approximation is employed as spatial discretization both for the pairwise matching deformations and for the level set representations. The numerical relaxation of the energy is performed via an efficient multi-scale procedure in space and time. Various examples for 2D and 3D shapes underline the effectiveness and robustness of the proposed approach.  相似文献   

4.
We develop a framework for polynomial regression on Riemannian manifolds. Unlike recently developed spline models on Riemannian manifolds, Riemannian polynomials offer the ability to model parametric polynomials of all integer orders, odd and even. An intrinsic adjoint method is employed to compute variations of the matching functional, and polynomial regression is accomplished using a gradient-based optimization scheme. We apply our polynomial regression framework in the context of shape analysis in Kendall shape space as well as in diffeomorphic landmark space. Our algorithm is shown to be particularly convenient in Riemannian manifolds with additional symmetry, such as Lie groups and homogeneous spaces with right or left invariant metrics. As a particularly important example, we also apply polynomial regression to time-series imaging data using a right invariant Sobolev metric on the diffeomorphism group. The results show that Riemannian polynomials provide a practical model for parametric curve regression, while offering increased flexibility over geodesics.  相似文献   

5.
This article provides an overview of various notions of shape spaces, including the space of parametrized and unparametrized curves, the space of immersions, the diffeomorphism group and the space of Riemannian metrics. We discuss the Riemannian metrics that can be defined thereon, and what is known about the properties of these metrics. We put particular emphasis on the induced geodesic distance, the geodesic equation and its well-posedness, geodesic and metric completeness and properties of the curvature.  相似文献   

6.
7.
2D-Shape Analysis Using Conformal Mapping   总被引:1,自引:0,他引:1  
The study of 2D shapes and their similarities is a central problem in the field of vision. It arises in particular from the task of classifying and recognizing objects from their observed silhouette. Defining natural distances between 2D shapes creates a metric space of shapes, whose mathematical structure is inherently relevant to the classification task. One intriguing metric space comes from using conformal mappings of 2D shapes into each other, via the theory of Teichmüller spaces. In this space every simple closed curve in the plane (a “shape”) is represented by a ‘fingerprint’ which is a diffeomorphism of the unit circle to itself (a differentiable and invertible, periodic function). More precisely, every shape defines to a unique equivalence class of such diffeomorphisms up to right multiplication by a Möbius map. The fingerprint does not change if the shape is varied by translations and scaling and any such equivalence class comes from some shape. This coset space, equipped with the infinitesimal Weil-Petersson (WP) Riemannian norm is a metric space. In this space, the shortest path between each two shapes is unique, and is given by a geodesic connecting them. Their distance from each other is given by integrating the WP-norm along that geodesic. In this paper we concentrate on solving the “welding” problem of “sewing” together conformally the interior and exterior of the unit circle, glued on the unit circle by a given diffeomorphism, to obtain the unique 2D shape associated with this diffeomorphism. This will allow us to go back and forth between 2D shapes and their representing diffeomorphisms in this “space of shapes”. We then present an efficient method for computing the unique shortest path, the geodesic of shape morphing between each two end-point shapes. The group of diffeomorphisms of S1 acts as a group of isometries on the space of shapes and we show how this can be used to define shape transformations, like for instance ‘adding a protruding limb’ to any shape.  相似文献   

8.
In this paper, we describe how to use geodesic energies defined on various sets of objects to solve several distance related problems. We first present the theory of metamorphoses and the geodesic distances it induces on a Riemannian manifold, followed by classical applications in landmark and image matching. We then explain how to use the geodesic distance for new issues, which can be embedded in a general framework of matching with free extremities. This is illustrated by results on image and shape averaging and unlabeled landmark matching. Laurent Garcin is a former student of the Ecole Polytechnique. He obtained his Ph.D. in 2004 at the Ecole Normale de Cachan, working on matching methods for landmarks and images. He is an engineer at the French National Geographic Institute. Laurent Younes is a former student of the Ecole Normale Superieure in Paris. He was awarded the Ph.D. from the University Paris Sud in 1989, and the thesis advisor certification from the same university in 1995. He works on the statistical analysis of images and shapes, and on modeling shape deformations and shape spaces. Laurent Younes entered CNRS, the French National Research Center in October 1991, in which he has been a “Directeur de Recherche" until 2003. He is now a professor at the Department of Applied Mathematics and Statistics Department and the Center for Imaging Science at Johns Hopkins University in July 2003.  相似文献   

9.
提出了一种基于关键帧的人体行为识别方法。利用关于弧长的方向函数对人体形状进行描述以及通过形状空间中两点间的测地线距离对形状间的相似性进行度量,提取视频序列中的关键帧,通过模板匹配的方法实现对行为的识别。对CASIA单人行为数据库和Weismann数据库进行测试,实验结果表明该方法具有较高的识别率。  相似文献   

10.
We construct a 1-parameter family of geodesic shape metrics on a space of closed parametric curves in Euclidean space of any dimension. The curves are modeled on homogeneous elastic strings whose elasticity properties are described in terms of their tension and rigidity coefficients. As we change the elasticity properties, we obtain the various elastic models. The metrics are invariant under reparametrizations of the curves and induce metrics on shape space. Analysis of the geometry of the space of elastic strings and path spaces of elastic curves enables us to develop a computational model and algorithms for the estimation of geodesics and geodesic distances based on energy minimization. We also investigate a curve registration procedure that is employed in the estimation of shape distances and can be used as a general method for matching the geometric features of a family of curves. Several examples of geodesics are given and experiments are carried out to demonstrate the discriminative quality of the elastic metrics.  相似文献   

11.
In this paper we summarize recent advances in shape analysis and shape-based activity recognition problems with a focus on techniques that use tools from differential geometry and statistics. We start with general goals and challenges faced in shape analysis, followed by a summary of the basic ideas, strengths and limitations, and applications of different mathematical representations used in shape analyses of 2D and 3D objects. These representations include point sets, curves, surfaces, level sets, deformable templates, medial representations, and other feature-based methods. We discuss some common choices of Riemannian metrics and computational tools used for evaluating geodesic paths and geodesic distances for several of these shape representations. Then, we study the use of Riemannian frameworks in statistical modeling of variability within shape classes.Next, we turn to models and algorithms for activity analysis from various perspectives. We discuss how mathematical representations for human shape and its temporal evolutions in videos lead to analyses over certain special manifolds. We discuss the various choices of shape features, and parametric and non-parametric models for shape evolution, and how these choices lead to appropriate manifold-valued constraints. We discuss applications of these methods in gait-based biometrics, action recognition, and video summarization and indexing.For reader convenience, we also provide a short overview of the relevant tools from geometry and statistics on manifolds in the Appendix.  相似文献   

12.
This paper presents a novel Riemannian framework for shape analysis of parameterized surfaces. In particular, it provides efficient algorithms for computing geodesic paths which, in turn, are important for comparing, matching, and deforming surfaces. The novelty of this framework is that geodesics are invariant to the parameterizations of surfaces and other shape-preserving transformations of surfaces. The basic idea is to formulate a space of embedded surfaces (surfaces seen as embeddings of a unit sphere in IR3) and impose a Riemannian metric on it in such a way that the reparameterization group acts on this space by isometries. Under this framework, we solve two optimization problems. One, given any two surfaces at arbitrary rotations and parameterizations, we use a path-straightening approach to find a geodesic path between them under the chosen metric. Second, by modifying a technique presented in [25], we solve for the optimal rotation and parameterization (registration) between surfaces. Their combined solution provides an efficient mechanism for computing geodesic paths in shape spaces of parameterized surfaces. We illustrate these ideas using examples from shape analysis of anatomical structures and other general surfaces.  相似文献   

13.
Statistical shape modeling is a widely used technique for the representation and analysis of the shapes and shape variations present in a population. A statistical shape model models the distribution in a high dimensional shape space, where each shape is represented by a single point. We present a design study on the intuitive exploration and visualization of shape spaces and shape models. Our approach focuses on the dual‐space nature of these spaces. The high‐dimensional shape space represents the population, whereas object space represents the shape of the 3D object associated with a point in shape space. A 3D object view provides local details for a single shape. The high dimensional points in shape space are visualized using a 2D scatter plot projection, the axes of which can be manipulated interactively. This results in a dynamic scatter plot, with the further extension that each point is visualized as a small version of the object shape that it represents. We further enhance the population‐object duality with a new type of view aimed at shape comparison. This new “shape evolution view” visualizes shape variability along a single trajectory in shape space, and serves as a link between the two spaces described above. Our three‐view exploration concept strongly emphasizes linked interaction between all spaces. Moving the cursor over the scatter plot or evolution views, shapes are dynamically interpolated and shown in the object view. Conversely, camera manipulation in the object view affects the object visualizations in the other views. We present a GPU‐accelerated implementation, and show the effectiveness of the three‐view approach using a number of real‐world cases. In these, we demonstrate how this multi‐view approach can be used to visually explore important aspects of a statistical shape model, including specificity, compactness and reconstruction error.  相似文献   

14.
《Graphical Models》2014,76(2):57-69
This paper presents a novel approach based on the shape space concept to classify deformations of 3D models. A new quasi-conformal metric is introduced which measures the curvature changes at each vertex of each pose during the deformation. The shapes with similar deformation patterns follow a similar deformation curve in shape space. Energy functional of the deformation curve is minimized to calculate the geodesic curve connecting two shapes on the shape space manifold. The geodesic distance illustrates the similarity between two shapes, which is used to compute the similarity between the deformations. We applied our method to classify the left ventricle deformations of myopathic and control subjects, and the sensitivity and specificity of our method were 88.8% and 85.7%, which are higher than other methods based on the left ventricle cavity, which shows our method can quantify the similarity and disparity of the left ventricle motion well.  相似文献   

15.
Recent advances in modeling tools enable non‐expert users to synthesize novel shapes by assembling parts extracted from model databases. A major challenge for these tools is to provide users with relevant parts, which is especially difficult for large repositories with significant geometric variations. In this paper we analyze unorganized collections of 3D models to facilitate explorative shape synthesis by providing high‐level feedback of possible synthesizable shapes. By jointly analyzing arrangements and shapes of parts across models, we hierarchically embed the models into low‐dimensional spaces. The user can then use the parameterization to explore the existing models by clicking in different areas or by selecting groups to zoom on specific shape clusters. More importantly, any point in the embedded space can be lifted to an arrangement of parts to provide an abstracted view of possible shape variations. The abstraction can further be realized by appropriately deforming parts from neighboring models to produce synthesized geometry. Our experiments show that users can rapidly generate plausible and diverse shapes using our system, which also performs favorably with respect to previous modeling tools.  相似文献   

16.
A geodesic is a parameterized curve on a Riemannian manifold governed by a second order partial differential equation. Geodesics are notoriously unstable: small perturbations of the underlying manifold may lead to dramatic changes of the course of a geodesic. Such instability makes it difficult to use geodesics in many applications, in particular in the world of discrete geometry. In this paper, we consider a geodesic as the indicator function of the set of the points on the geodesic. From this perspective, we present a new concept called fuzzy geodesics and show that fuzzy geodesics are stable with respect to the Gromov‐Hausdorff distance. Based on fuzzy geodesics, we propose a new object called the intersection configuration for a set of points on a shape and demonstrate its effectiveness in the application of finding consistent correspondences between sparse sets of points on shapes differing by extreme deformations.  相似文献   

17.
We consider the Rao geodesic distance (GD) based on the Fisher information as a similarity measure on the manifold of zero-mean multivariate generalized Gaussian distributions (MGGD). The MGGD is shown to be an adequate model for the heavy-tailed wavelet statistics in multicomponent images, such as color or multispectral images. We discuss the estimation of MGGD parameters using various methods. We apply the GD between MGGDs to color texture discrimination in several classification experiments, taking into account the correlation structure between the spectral bands in the wavelet domain. We compare the performance, both in terms of texture discrimination capability and computational load, of the GD and the Kullback-Leibler divergence (KLD). Likewise, both uni- and multivariate generalized Gaussian models are evaluated, characterized by a fixed or a variable shape parameter. The modeling of the interband correlation significantly improves classification efficiency, while the GD is shown to consistently outperform the KLD as a similarity measure.  相似文献   

18.
The article discusses a new shape synthesizer that fosters creative 3D modeling of shapes difficult to develop without a computer. It builds on principles from sound synthesis, mapping them directly into 3D geometry. The article focuses on creative and expressive modeling and development rather than faithfully representing manufacturing processes. The modeling environment lets a designer interactively develop and refine models based on aesthetic judgement applied during the modeling process  相似文献   

19.
We introduce a geometric shape modeling scheme which allows for representation of global and local shape characteristics of an object. Geometric models are well-suited for representing global shapes without local detail, but we propose a scheme which represents global shapes with local detail and permits model shaping as well as topological changes via physics-based control. The scheme represents shapes by pedal curves and surfaces, i.e. the loci of the foot of perpendiculars to the tangents of a fixed curve/surface from a fixed point called the pedal point. By varying the location of the pedal point, one can synthesize a large class of shapes which exhibit both local and global deformations. We introduce physics-based control for shaping these geometric models by letting the pedal point vary and use a snake to represent the position of this varying point. The model, a “snake pedal”, allows for interactive manipulation via forces applied to the snake. We develop a fast numerical iterative algorithm for shape recovery from image data using this scheme. The algorithm involves the Levenberg-Marquardt (LM) method in the outer loop for solving the global parameters and the alternating direction implicit (ADI) method in the inner loop for solving the local parameters of the model. The combination of the global and local scheme leads to an efficient numerical solution to the model fitting problem. We demonstrate the applicability of this modeling scheme via examples of shape synthesis and shape estimation from real image data  相似文献   

20.
Embedding Gestalt laws in Markov random fields   总被引:3,自引:0,他引:3  
The goal of this paper is to study a mathematical framework of 2D object shape modeling and learning for middle level vision problems, such as image segmentation and perceptual organization. For this purpose, we pursue generic shape models which characterize the most common features of 2D object shapes. In this paper, shape models are learned from observed natural shapes based on a minimax entropy learning theory. The learned shape models are Gibbs distributions defined on Markov random fields (MRFs). The neighborhood structures of these MRFs correspond to Gestalt laws-colinearity, cocircularity, proximity, parallelism, and symmetry. Thus, both contour-based and region-based features are accounted for. Stochastic Markov chain Monte Carlo (MCMC) algorithms are proposed for learning and model verification. Furthermore, this paper provides a quantitative measure for the so-called nonaccidental statistics and, thus, justifies some empirical observations of Gestalt psychology by information theory. Our experiments also demonstrate that global shape properties can arise from interactions of local features  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号