首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
陈宝璠 《硅酸盐通报》2013,32(9):1733-1740
以自制的活性大单体聚乙二醇单甲醚丙烯酸酯(MPEGAA)、丙烯酸(AA)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、甲基丙烯磺酸钠(MAS)和丙烯酰胺(AM)为原料,通过正交试验确定了共聚单体比例,采用水溶液聚合法合成了酰胺型AMPS改性聚丙烯酸高效减水剂.并重点考察了共聚各单体用量和聚合反应条件对酰胺型AMPS改性聚丙烯酸高效减水剂性能的影响.结果表明:酰胺型AMPS改性聚丙烯酸高效减水剂最佳合成工艺条件为n(MPEGAA)∶ n(AA)∶ n(MAS)∶n(AMPS)∶n(AM) =0.1∶0.65∶0.1∶0.2∶0.15,引发剂用量为5%,聚合反应温度和反应时间分别控制在80℃和5h.在此条件下合成的酰胺型AMPS改性聚丙烯酸高效减水剂具有良好的分散性和保塑性.当掺量(折固掺量)为0.24%时,90 min内水泥净浆流动度保持率高达98%.  相似文献   

2.
含磷AA/AMPS共聚物的合成及阻垢性能研究   总被引:4,自引:0,他引:4  
王恩良 《工业水处理》2003,23(3):52-53,64
以水为溶剂,丙烯酸(AA),2-丙烯酰胺基-2-甲基丙磺酸(AMPS)和次磷酸钠为原料,合成了含磷AA/AMPS共聚物阻垢分散剂。探讨了单体配比,引发剂用量,反应温度等对共聚物阻垢性能的影响。得出了最佳合成条件:m(AA);m(AMPS)=75:25,引发剂与单体(AA和AMPS)的质量比为10%,反应时间4h,反应温度90℃,并采用静态实验法评价了共聚物的阻垢性能,结果表明,含磷AA/AMPS共聚物阻垢性能优良。  相似文献   

3.
以马来酸酐(MA)、丙烯酸(AA)和2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为单体,采用水溶液聚合法制备了一种线型MA/AA/AMPS聚羧酸高效陶瓷减水剂。通过正交试验,研究了各反应条件对添加了0.35%(相对绝干料浆)线型MA/AA/AMPS聚羧酸高效陶瓷减水剂的陶瓷坯体料浆流动时间的影响,并进一步利用FT-IR和XRD等手段分别对线型MA/AA/AMPS聚羧酸高效陶瓷减水剂的官能团结构和晶相结构进行表征,分别用POM和SEM照片观察陶瓷坯体料浆的分散情况和陶瓷坯体试样的断面形貌。结果表明,线型MA/AA/AMPS聚羧酸高效陶瓷减水剂最佳合成条件为:聚合温度为80 ℃、引发剂用量占聚合单体总质量的9%、n(MA)∶n(AA)∶n(AMPS)=1.0∶3.5∶1.5和聚合时间为4 h。当线型MA/AA/AMPS聚羧酸高效陶瓷减水剂掺量为0.35%(相对绝干料浆)时,陶瓷坯体料浆体系的黏度从689.5 mPa穝降低到56.8 mPa穝。  相似文献   

4.
以丙烯酸(AA)和丙烯酸丁酯(BA)为共聚单体,采用溶液接枝法对废聚苯乙烯(PS)进行接枝改性制得PS接枝共聚物,然后以PS接枝共聚物的乳液为基料制备改性PS防水涂料。研究了引发剂用量、单体用量、反应温度和反应时间对PS接枝共聚物接枝率的影响,以及填料和增塑剂的用量对改性PS防水涂料性能影响。结果表明,PS接枝共聚物的最佳合成工艺为:PS用量为30 g,溶剂用量为60 mL,引发剂用量为2.2 g,单体用量为20 g,反应温度为85 ℃,反应时间为25 h;向改性PS乳液中填加10 %的填料和4 %的增塑剂制得的防水涂料性能最佳:耐水时间为25 h,耐盐时间为27 h,表干时间为18 min,冲击强度达50 kg·cm。  相似文献   

5.
以丙烯酸(AA)、丙烯酰胺(AM)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)、羧甲基纤维素钠、丙烯酰氧乙基三甲基氯化铵(DAC)为原料,通过水溶液接枝聚合的方法,制备CMCNa/AM/AA/AMPS/DAC五元共聚物,研究了不同盐溶液和不同温度对接枝共聚物水溶液粘度的影响。结果表明,随着盐的增加,CMCNa/AM/AA/AMPS/DAC五元共聚物水溶液的粘度保留率比CMCNa-g-AM二元共聚物溶液有所提高,共聚物的耐温性也有所提高。CMCNa/AM/AA/AMPS/DAC聚合物溶液Cr3+交联凝胶的流变实验结果表明,五元共聚物CMCNa/AM/AA/AMPS/DAC相对于二元共聚物CMCNa-g-AM具有更好的溶液性能。  相似文献   

6.
陈宝璠 《精细化工》2013,(12):1435-1440
以马来酸酐(MA)、丙烯酸(AA)和2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为单体,采用水溶液聚合法制备了一种线型MA/AA/AMPS聚羧酸高效陶瓷减水剂。通过正交实验,研究了各反应条件对添加了0.35%(相对于绝干料浆质量)线型MA/AA/AMPS聚羧酸高效陶瓷减水剂的陶瓷坯体料浆流动时间的影响,并进一步利用FTIR和XRD等手段对线型MA/AA/AMPS聚羧酸高效陶瓷减水剂的官能团结构和晶相结构进行了表征,分别用POM和SEM照片观察陶瓷坯体料浆的分散情况和陶瓷坯体试样的断面形貌。结果表明,线型MA/AA/AMPS聚羧酸高效陶瓷减水剂最佳合成条件为:聚合温度为80℃、引发剂用量占聚合单体总质量的9%、n(MA)∶n(AA)∶n(AMPS)=1.0∶3.5∶1.5、聚合时间为4 h。当线型MA/AA/AMPS聚羧酸高效陶瓷减水剂掺量为0.35%(相对于绝干料浆质量)时,陶瓷坯体料浆体系的黏度从689.5 mPa·s降低到56.8 mPa·s。  相似文献   

7.
宋波  魏晓宏 《化学工程师》2012,26(11):10-12
木质素磺酸钠是一种常见的减水剂,通过对其进行化学改性,可以提高减水率、改善其在混凝土应用过程中强度偏低的缺点。本文以过硫酸铵为引发剂,在超声波辅助下引发丙烯酸单体接枝共聚,研究了引发剂用量、反应温度等对单体转化率和共聚产物的影响。结果表明:在超声作用下,能够加快聚合反应速度,提高转化率。改性后木质素磺酸钠的减水率和抗压强度比明显提高。  相似文献   

8.
淀粉反相乳液法三元接枝共聚改性研究与表征   总被引:1,自引:0,他引:1  
以丙烯酰胺(AM)和丙烯酸(AA)为接枝单体,采用反相乳液聚合技术对木薯淀粉进行接枝共聚改性,生成淀粉-丙烯酰胺-丙烯酸三元接枝共聚物(St-g-AM/AA)。考察反应温度和时间、引发剂和单体浓度、单体配比等因素对淀粉三元接枝共聚反应过程的影响规律,并通过红外光谱等表征共聚物结构。实验结果显示:引发剂浓度、单体浓度和单体比、反应温度和时间等因素对三元接枝共聚改性反应影响显著;红外光谱和电镜扫描表征证明接枝共聚反应发生在淀粉颗粒表面,经三元接枝共聚反应淀粉已被AM和AA成功改性。  相似文献   

9.
分别以羟甲基丙烯酰胺(NHA)、苯乙烯(St)为接枝单体,过氧化二异丙苯(DCP)为引发剂,用双螺杆挤出机制备了聚丙烯(PP)的接枝共聚物PP-g-NHA和PP-g-NHA/St。红外分析表明,NHA和St接枝到PP链上形成接枝共聚物。探讨了NHA用量、St用量、DCP用量及加工温度、螺杆转速对接枝率及接触角的影响。结果表明,NHA的最佳用量是3 %,此时接枝率达到最大值为1.6 %,接触角最小为83 °;随着DCP用量的增加,接枝率先增大后下降;加工温度不能太高,螺杆转速一定要大于40 r/min。  相似文献   

10.
水溶性高分子AM/AMPS系由丙烯酰胺(AM)和2-丙烯酰胺基-2-甲基丙磺酸(AMPS)组成,本文应用光化学方法对AM/AMPS共聚物进行改性,得到活性可聚合产物,应用这种方法,在高分子链上生成的过氧化物含量随UV光照时间有明显变化,照射5-10min过氧化物含量最高,值得指出,较高的过氧化物生成最仅在采用二苯酮作为光敏剂和保持低温的条件下才能得到,这种活性改性AM/AMPS共聚物,可用光聚合或热聚合方法引发不同烯类单体共聚合,得到不同用途的接枝/交联共聚物产品。  相似文献   

11.
以桉木硫酸盐法制浆黑液为原料,经过4步改性反应即氧化、羟甲基化、磺化和接枝共聚,得到改性木质素高效减水剂(MLS)。通过对MLS的表面张力、电荷密度、表面吸附量和流动度等性能分析,研究高效改性木质素减水剂的减水作用机理。黑液经过4步改性反应,有效地引入了活性基团,制备出的MLS的表面活性和电荷密度得到了提高;MLS通过在水泥颗粒表面形成吸附层达到减水作用,当MLS的掺加量为0.5%时,在水泥颗粒表面吸附量达到最高,减水效果已接近高效减水剂的水平。  相似文献   

12.
以交联球形纤维素珠体为骨架,以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为单体,通过接枝共聚的方法赋予球形纤维素吸附剂强酸型基团——磺酸基,因此首先合成出纤维素/AMPS共聚物,并进行制备条件的优选实验,得出最佳的制备工艺条件为:以Na2SO3/K2S2O8作为引发体系,引发剂的用量为2.5%,单体与纤维素的最佳比值为1.5∶1(W/W),反应温度40℃,反应时间4.0h。在上述工艺条件下,所制备出的纤维素/AMPS接枝共聚物的接枝率为46.9%,而AMPS的均聚物含量仅为5.4%。  相似文献   

13.
董春岭  张连红  赵连海  梁红玉 《辽宁化工》2010,39(12):1229-1231
以过硫酸铵为引发剂,在75℃下,pH为中性时,用马来酸酐(MA)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、α-甲基丙烯酸(α-AA)和丙烯酸丁酯(BA)单体在水溶液下接枝共聚合成聚羧酸系高效减水剂。其性能与合成时采用的单体比例、温度、pH值、引发剂添加量和引发剂添加方法、水灰比等有关。通过实验发现,其中单体最佳比例为m(MA)/m(AMPS)/m(α-AA)/m(BA)=1︰8︰12︰1,pH值为中性,引发剂添加量为单体质量的10%,反应温度为75℃时得到的聚合物的性能最佳。通过性能检测发现,该减水剂具有优良的分散能力与流动保持性,它的减水率最高达到了28%(减水剂掺量为水泥质量的1%),水泥静浆流动度(扩展度)达到了197 mm以上,而且在60 min内几乎无坍落度损失,水泥浆体粘聚性好。  相似文献   

14.
马驰  陈尔凡  T VLADLKOVA  刘艺 《辽宁化工》2007,36(2):75-77,79
通过两步溶液聚合的方法制备了由丙烯酸单体(AA)与2-丙烯酰胺-2-甲基丙磺酸(AMPS)的共聚物和聚乙烯基吡咯烷酮(PVP)形成的具有互穿网络状结构(IPN)的新型聚合物水凝胶。并研究了共聚单体配比、PVP和交联剂对水凝胶电场响应性及力学性能的影响。探索了凝胶在电场作用下的弯曲机理。实验结果表明:此种具有IPN结构的凝胶具有较好的电场响应性和力学强度。当n(AA):n(AMPS)达到7:3,ω(PVP)=16%,ω,(交联剂)=0.05%时,水凝胶的综合性能达到最好。  相似文献   

15.
本文利用直链的超支化聚酯对聚羧酸系减水剂进行改性制备超支化聚酯接枝聚羧酸系减水剂。首先以乙酸乙酯为溶剂,以顺丁烯二酸酐和乙二醇为单体,以过硫酸铵为引发剂合成直链超支化聚酯;再将直链超支化聚酯接枝到聚羧酸减水剂上合成超支化聚酯接枝聚羧酸系减水剂,研究了反应温度,反应时间以及引发剂的用量对减水率的影响。  相似文献   

16.
马斐  王安建  黄小珠  王颖  杨君 《广东化工》2014,(17):49-50,60
设计四元单体共聚体系,以聚乙二醇异戊烯丙基醚2400(TPEG)、丙烯酸(AA)、甲基丙烯磺酸钠(SMAS)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)在过硫酸铵(APS)为引发剂存在下共聚,一步法合成高性能的聚羧酸减水剂。经正交实验优选出最佳合成工艺条件如下:AA/TPEG摩尔比为3∶1;AMPS/TPEG摩尔比为0.3∶1,SAS/TPEG摩尔比为0.8∶1,引发剂APS的用量为共聚单体总质量的4%,反应温度为70℃、反应时间为8 h。所合成的聚羧酸减水剂具有优异的减水性能和良好的保坍性能,并能大幅提高所得混凝土拌合物的强度。  相似文献   

17.
腐殖酸(HA)接枝丙烯酸(AA)改性制备天然产物基阻垢剂,研究了物质的量比、引发剂用量、反应温度、反应时间对聚合物阻垢性能的影响。  相似文献   

18.
在异戊烯醇聚氧乙烯醚(TPEG)和丙烯酸(AA)二元共聚合成聚羧酸减水剂PCAl的基础上,分别以丙烯腈(AN)、丙烯酸羟乙酯(HA),以及马来酸二甲酯(DMM)为改性单体,实现了三元共聚进行聚羧酸减水剂(PCA)的改性合成PCA2、PCA3、PCA4,显著提高了PCA的减水率、保坍性.四种PCA的分散机理初步研究表明:氰基、酯基的水解对初始分散及分散保持能力影响显著;氰基改性PCA分散性最好,水泥浆体屈服应力最低,更接近牛顿流体;在掺量为0.20%时,马来酸二甲酯改性PCA的新拌混凝土减水率为34.80%,混凝土坍落度1h坍落度增长2.22%,实现了高减水且具有一定缓释效应.  相似文献   

19.
以自制的衣康酸聚乙二醇酯大分子单体(IAPEG)、丙烯酸(AA)、马来酸酐(MA)和甲基丙烯磺酸钠(MAS)为原料,过硫酸铵为引发剂,经水溶液聚合制备了一种聚羧酸系减水剂(PC)。通过红外光谱对共聚产物的结构进行了表征,采用凝胶渗透色谱仪对共聚产物的相对分子质量及相对分子质量分布进行了测量,讨论了聚合条件对减水剂性能的影响,得到最佳反应条件为:单体的摩尔比为n(IAPEG)∶n(MA)∶n(AA)∶n(MAS)=1.5∶4∶6∶3,引发剂用量为单体总质量的10%,反应温度80℃,反应时间5h。在该条件下合成的减水剂可以降低溶液的表面张力,促进水泥颗粒的分散,使水泥浆体具有较好的流动度。添加减水剂混凝土的减水率为39.2%,7d抗压强度比为191.4%,28天抗压强度比为154.7%。  相似文献   

20.
陈宝璠 《化工进展》2013,(4):898-904
以自制的活性大单体聚乙二醇单甲醚丙烯酸酯(MPEGAA)、丙烯酸(AA)和2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为原料,在水溶液中共聚合成了MPEGAA-AA-AMPS高效减水剂。重点考察了单体的摩尔比、引发剂(APS)用量、反应温度和反应时间等合成条件对MPEGAA-AA-AMPS高效减水剂的影响。结果表明:最佳的高效减水剂的合成条件是:n(MPEGAA)∶n(AA)∶n(AMPS)=1∶4.3∶1.10,引发剂APS用量为单体总质量的5%,聚合温度和反应时间分别为80℃和5 h。在该条件下合成的MPEGAA-AA-AMPS高效减水剂,其分散性和保塑性理想,减水增强效果明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号