共查询到18条相似文献,搜索用时 62 毫秒
1.
闭合序列模式挖掘算法 总被引:3,自引:1,他引:2
提出了一种新的挖掘闭合序列模式的PosD算法,该算法利用位置数据保存数据项的顺序信息,并基于位置数据列表保存数据项的顺序关系提出了两种修剪方法:逆向超模式和相同位置数据。为了确保栅格存储的正确性和简洁性,另外还针对一些特殊情况做处理。试验结果表明,在中大型数据库和小支持度的情况下谊算法比CloSpan算法更有效。 相似文献
2.
提出了一种基于H-tree的多维序列模式挖掘算法,首先在序列信息中挖掘序列模式,然后针对每个序列模式,根据包含此模式的所有元组中的多维信息构造H-tree树,挖掘出相应的多维模式,从而得到了多维序列模式。该算法将多维分析方法与序列模式挖掘算法有效地结合在一起,当维度较高时具有较高的性能。 相似文献
3.
一种挖掘多维序列模式的有效方法 总被引:1,自引:0,他引:1
提出了一种新的多维序列模式挖掘算法,首先在序列信息中挖掘序列模式,然后针对每个序列模式,在包含此模式的所有元组中的多维信息中挖掘频繁1-项集,由得到的频繁1-项集开始,循环的由频繁(k-1)-项集(k>1)连接生成频繁k项集,从而得到所有的多维模式。该算法通过扫描不断缩小的频繁(k-1)-项集来生成频繁k项集,减少了扫描投影数据库的次数,因而减少了时间开销,实验表明该算法有较高的挖掘效率。 相似文献
4.
序列模式的挖掘是近年来的研究热点之一,目前很多研究都集中在闭合频繁项集与闭合序列模式的挖掘,较少涉及更加复杂、有重要应用价值的组合序列模式.针对任意长度和任意组合次数的频繁组合序列模式,提出了一种挖掘全部闭合的组合序列的算法CloCSP.为克服指数量级的候选序列进行闭合检验的困难,提出了既能生成频繁组合序列,又能有效剪枝,并同时完成闭合检验的混合扩展策略,该策略无需维护候选集.实验表明,CloCSP算法能够有效挖掘出隐藏在序列数据中,尤其是稠密数据集内的闭合组合序列模式,有助于揭示更加复杂的序列模式. 相似文献
5.
提出一种基于最大频繁模式、模式相似与属性描述相结合的多维序列模式挖掘算法MSP,该算法包括3个步骤:挖掘数据集中的最大频繁模式,每个频繁模式成为一个模式类;比较数据中各序列项序列与各模式类的包含与相似关系;按照一定的规则抽取与各模式类相关的属性,给出以属性为前件、模式类为后件的多维序列规则为形式的多维序列模式挖掘结果.... 相似文献
6.
提出一种新的闭合序列模式挖掘算法,该算法利用位置数据保存数据项的序列信息,并提出两种修剪方法:逆向超模式和相同位置数据。为了确保格存储的正确性和简洁性,另外还针对一些特殊情况做处理。试验结果表明,在中大型数据库和小支持度的情况下,该算法比CloSpan算法[8]更有效。 相似文献
7.
多维序列模式挖掘是在序列模式挖掘的基础上发展起来的,文章阐述了有关概念,介绍了两种序列模式挖掘算法:GSP算法和PrefixSpan算法,在对两类算法进行比较分析的基础上形成了挖掘多维序列模式的UniSeq算法、Dim-Seq算法和Seq-Dim算法。针对不同维度的模式,各种算法特点不同。 相似文献
8.
序列模式挖掘研究与发展 总被引:1,自引:1,他引:0
序列模式挖掘是数据挖掘的一个重要研究课题,它在很多领域中都有着广泛的应用.首先讨论了序列模式挖掘的相关背景,然后对序列模式挖掘进行分类,并在此基础上对每一类序列模式挖掘算法的特点进行了介绍和比较;最后,对序列模式挖掘未来的研究重点进行展望,以便研究者对序列模式挖掘做进一步的研究. 相似文献
9.
多维概念格与多维序列模式的增量挖掘 总被引:1,自引:0,他引:1
多维序列模式挖掘旨在将一个或多个背景维度信息中发现的关联模式与有序事务序列中发现的序列模式有机结合,从而为用户提供信息内容更加丰富、更具有直接应用价值的多维序列模式.目前虽有一些挖掘多维序列模式的工作,但其关联模式与序列模式的发现过程是基于不同的数据结构分开进行的.提出一种新的概念格结构——多维概念格,它是对概念格的延伸与泛化,其内涵更加丰富,不仅具有多个有序的任务内涵,而且具有多个无序的背景内涵.设计实现了基于该结构的增量式多维序列模式挖掘算法,该算法使用统一的数据模型实现关联模式与序列模式的高效同步挖掘.在合成数据集上的实验结果验证了算法的有效性.同时,算法在实际的银行数据集上的应用效果也说明了算法的实用性. 相似文献
10.
针对数据库减量时不断重复挖掘的问题,在已有闭合序列模式算法PosD*的基础上,提出一种减量挖掘算法 DePosD*。通过移动频繁和非频繁闭合序列集合之间的数据,在原有挖掘结果上直接进行更新,减少挖掘的时间。实验结果证明,在减量过程中该算法的时间效率与PosD*相比有所提高。 相似文献
11.
针对带时间约束的序列模式,提出了一种改进的挖掘算法TSPM,克服了传统的序列模式挖掘方法时空开销大,结果数量巨大且缺少针对性的缺陷.算法引入图结构表示频繁2序列,仅需扫描一次数据库,即可将与挖掘任务相关的信息映射到图中,图结构的表示使得挖掘过程可以充分利用项目之间的次序关系,提高了频繁序列的生成效率.另外算法利用序列的位置信息计算支持度,降低了处理时间约束的复杂性,避免了反复测试序列包含的过程.实验证明,该算法较传统的序列模式发现算法在时间和空间性能上具有优越性。 相似文献
12.
在企业营销活动中,对现有客户进行有针对性的交叉营销活动,可以节省开支,增加企业利润,将引入多维属性和多种约束的改进序列模式算法用于构建交叉营销模型,提出了增加老客户价值、进行交叉营销的合理可行的数据挖掘步骤,用以指导企业的营销决策.试验结果表明,该方法有着很好的理论价值和应用价值. 相似文献
13.
Frequent closed itemsets (FCI) play an important role in pruning redundant rules fast. Therefore, a lot of algorithms for mining FCI have been developed. Algorithms based on vertical data formats have some advantages in that they require scan databases once and compute the support of itemsets fast. Recent years, BitTable (Dong & Han, 2007) and IndexBitTable (Song, Yang, & Xu, 2008) approaches have been applied for mining frequent itemsets and results are significant. However, they always use a fixed size of Bit-Vector for each item (equal to number of transactions in a database). It leads to consume more memory for storage Bit-Vectors and the time for computing the intersection among Bit-Vectors. Besides, they only apply for mining frequent itemsets, algorithm for mining FCI based on BitTable is not proposed. This paper introduces a new method for mining FCI from transaction databases. Firstly, Dynamic Bit-Vector (DBV) approach will be presented and algorithms for fast computing the intersection between two DBVs are also proposed. Lookup table is used for fast computing the support (number of bits 1 in a DBV) of itemsets. Next, subsumption concept for memory and computing time saving will be discussed. Finally, an algorithm based on DBV and subsumption concept for mining frequent closed itemsets fast is proposed. We compare our method with CHARM, and recognize that the proposed algorithm is more efficient than CHARM in both the mining time and the memory usage. 相似文献
14.
回顾了常见的关联规则算法,关注频繁闭项集这一非常有发展前途的方法.在综合Tough型约束与频繁闭项集的基础上,提出了关联规则的一种新算法--基于Tough型约束的频繁闭项集挖掘算法(TC-based FCIM Algorithm),分析了算法中选择过程和过滤过程这两个重要过程的先后顺序. 相似文献
15.
事务间频繁项集将传统的单维事务内关联规则扩展到多维跨事务关联规则,但事务问频繁项集的数量随滑 动时同间窗口的增大而迅速增加.利用频繁闭项集的特点.提出事务间频繁闭项集的概念及其挖掘算法(FCITA).该算法采用分割和条件数据库技术,避免生成庞大的扩展数据库;利用扩展二进制形武压缩事务,从而提高支持度的计算效事.此外,动态排序和哈希表极大地减少了频繁闭项集的测试次数.仿真比较表明,FCITA算法具有较高的挖掘效率. 相似文献
16.
Frequent sequential pattern mining with constraints is the task of discovering patterns by incorporating the user defined constraints into the mining process, thus not only improving mining efficiency but also making the discovered patterns to better meet user requirements. Though many studies have been done, few have been carried out on the “tough aggregate constraints” due to the diffIculty of pushing the constraints into the mining process. In this paper we provide efficient strategies to deal with tough aggregate constraints. Through a theoretical analysis of the tough aggregate constraints based on the concept of total contribution of sequences, we first show that two typical kinds of constraints can be transformed into the same form and thus can be processed in a uniform way. We then propose a novel algorithm called PTAC (sequential frequent Patterns mining with Tough Aggregate Constraints) to reduce the cost of using tough aggregate constraints through incorporating two effective strategies. One avoids checking data items one by one by utilizing the features of promisingness exhibited by some other items and validity of the corresponding prefix. The other avoids constructing an unnecessary projected database through effectively pruning those unpromising new patterns that may, otherwise, serve as new prefixes. With these strategies, our algorithm obtains good performance in speed and space, as demonstrated by experimental studies conducted on the synthetic datasets generated by the IBM sequence generator, in addition to a real dataset. 相似文献
17.
《Expert systems with applications》2014,41(11):5071-5081
Recently, high utility sequential pattern mining has been an emerging popular issue due to the consideration of quantities, profits and time orders of items. The utilities of subsequences in sequences in the existing approach are difficult to be calculated due to the three kinds of utility calculations. To simplify the utility calculation, this work then presents a maximum utility measure, which is derived from the principle of traditional sequential pattern mining that the count of a subsequence in the sequence is only regarded as one. Hence, the maximum measure is properly used to simplify the utility calculation for subsequences in mining. Meanwhile, an effective upper-bound model is designed to avoid information losing in mining, and also an effective projection-based pruning strategy is designed as well to cause more accurate sequence-utility upper-bounds of subsequences. The indexing strategy is also developed to quickly find the relevant sequences for prefixes in mining, and thus unnecessary search time can be reduced. Finally, the experimental results on several datasets show the proposed approach has good performance in both pruning effectiveness and execution efficiency. 相似文献
18.
序列模式挖掘在网络业务流分析中的应用 总被引:2,自引:0,他引:2
网络业务流分析是为了适应网络优化的需要而出现的分析方法。把一种新的序列模式挖掘算法用于网络业务流分析,对网络业务的模式进行挖掘,性能上优于以往的算法。 相似文献