首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A Low Voltage Mixer With Improved Noise Figure   总被引:2,自引:0,他引:2  
A 5.2 GHz low voltage mixer with improved noise figure using TSMC 0.18 $mu$m CMOS technology is presented in this letter. This mixer utilizes current reuse and ac-coupled folded switching to achieve low supply voltage. The noise figure of the mixer is strongly influenced by flicker noise. A resonating inductor is implemented for tuning out the parasitic components, which not only can improve noise figure but also enhance conversion gain. A low voltage mixer without resonating technique has also been fabricated and measured for comparison. Simulated results reveal that flicker corner frequency is lowered. The measured results show 4.5 dB conversion gain enhancement and 4 dB reduction of noise figure. The down-conversion mixer with resonating inductor achieves 5.8 dB conversion gain, ${-}16$ dBm ${rm P}_{{rm 1dB}},$ ${-}6$ dBm ${rm IIP}_{3}$ at power consumption of 3.8 mW and 1 V supply voltage.   相似文献   

2.
LLC resonant converter has been used widely as dc–dc converter for achieving constant dc voltage. In this paper, an LLC resonant converter, by adding an inductance to its conventional topology and considering the rectifying stage stray inductances, is proposed for an adjustable wide range regulated current source (20–200 ${rm A}_{rm dc}$) for using as ion implanter's filament power supply. The additional inductor increases output current adjustment range and efficiency, especially at light loads. Transformer's leakage inductances and rectifying stage stray inductances have been considered. Because of these inductances, the rectifier stage always works in continuous conduction mode, and its conduction angle is forced to be larger than $pi$, and peak current of the rectifier stage and the output capacitor have been reduced effectively. Switching losses and electromagnetic interference noises have been reduced as well due to zero-voltage switching at the primary and secondary sides of the converter, and zero-current switching at its secondary side. Soft switching is achieved for all power devices under all operating conditions. A developed prototype of the converter has been tested under different load (2.5–12.5 m$Omega$) and input voltage conditions (320–370 $V_{rm dc}$) with maximum efficiency of 87%. Experimental results confirm high performance of the designed adjustable and regulated current source even under the worst-case conditions.   相似文献   

3.
MOSFET drain current second-order nonlinearity has a significant impact on the linearity of current regulated CMOS active inductors. It tends to compress MOSFET transconductance $(g_{m})$ by generating excess dc current $(I_{rm EX})$ in the channel, which is a function of incoming input signal amplitude. This generated excess dc current can change the original dc operating point of the current regulated CMOS active inductor, and thus, influence the inductance. Unfortunately, MOSFET drain current second-order nonlinearity contributes more to MOSFET $g_{m}$ compression than MOSFET drain current third-order nonlinearity. In this paper, a new technique known as feed-forward current source (FFCS) has been proposed to improve the linearity of the active inductor. The proposed FFCS technique makes use of the second-order nonlinear property of a MOSFET that generates $I_{rm EX}$ when an input ac signal is applied. The generated $I_{rm EX}$ is then fed-forward to the current source of the active inductor to drain out the $I_{rm EX}$ in the active inductor. This prevents the dc operating point from shifting and improves its inductance linearity. Single-ended and differential active inductors with the proposed FFCS circuit have been fabricated using Silterra's CMOS 0.18-$mu{hbox{m}}$ technology to verify the proposed technique.   相似文献   

4.
A low-power fully integrated low-noise amplifier (LNA) with an on-chip electrostatic-static discharge (ESD) protection circuit for ultra-wide band (UWB) applications is presented. With the use of a common-gate scheme with a ${rm g}_{rm m}$ -boosted technique, a simple input matching network, low noise figure (NF), and low power consumption can be achieved. Through the combination of an input matching network, an ESD clamp circuit has been designed for the proposed LNA circuit to enhance system robustness. The measured results show that the fabricated LNA can be operated over the full UWB bandwidth of 3.0 to 10.35 GHz. The input return loss $({rm S}_{11})$ and output return loss $({rm S}_{22})$ are less than ${-}8.3$ dB and ${-}9$ dB, respectively. The measured power gain $({rm S}_{21})$ is $11 pm 1.5$ dB, and the measured minimum NF is 3.3 dB at 4 GHz. The dc power dissipation is 7.2 mW from a 1.2 V supply. The chip area, including testing pads, is 1.05 mm$,times,$ 0.73 mm.   相似文献   

5.
Double-reduced-surface-field (RESURF) MOSFETs with $hbox{N}_{2}hbox{O}$ -grown oxides have been fabricated on the 4H-SiC $(hbox{000} bar{hbox{1}})$ face. The double-RESURF structure is effective in reducing the drift resistance, as well as in increasing the breakdown voltage. In addition, by utilizing the 4H-SiC $(hbox{000}bar{hbox{1}})$ face, the channel mobility can be increased to over 30 $hbox{cm}^{2}/hbox{V}cdothbox{s}$, and hence, the channel resistance is decreased. As a result, the fabricated MOSFETs on 4H-SiC $( hbox{000}bar{hbox{1}})$ have demonstrated a high breakdown voltage $(V_{B})$ of 1580 V and a low on-resistance $(R_{rm ON})$ of 40 $hbox{m}Omega cdothbox{cm}^{2}$. The figure-of-merit $(V_{B}^{2}/R_{rm ON})$ of the fabricated device has reached 62 $hbox{MW/cm}^{2}$, which is the highest value among any lateral MOSFETs and is more than ten times higher than the “Si limit.”   相似文献   

6.
A low-power CMOS voltage reference was developed using a 0.35 $mu$m standard CMOS process technology. The device consists of MOSFET circuits operated in the subthreshold region and uses no resistors. It generates two voltages having opposite temperature coefficients and adds them to produce an output voltage with a near-zero temperature coefficient. The resulting voltage is equal to the extrapolated threshold voltage of a MOSFET at absolute zero temperature, which was about 745$~$mV for the MOSFETs we used. The temperature coefficient of the voltage was 7 ppm/ $^{circ}$C at best and 15 ppm/$^{circ}$C on average, in a range from ${-}$ 20 to 80$^{circ}$ C. The line sensitivity was 20 ppm/V in a supply voltage range of 1.4–3 V, and the power supply rejection ratio (PSRR) was ${-}$45 dB at 100 Hz. The power dissipation was 0.3 $mu$W at 80$^{circ}$C. The chip area was 0.05 mm$^2$ . Our device would be suitable for use in subthreshold-operated, power-aware LSIs.   相似文献   

7.
In this paper, we show that Sudoku puzzles can be formulated and solved as a sparse linear system of equations. We begin by showing that the Sudoku ruleset can be expressed as an underdetermined linear system: ${mmb{Ax}}={mmb b}$, where ${mmb A}$ is of size $mtimes n$ and $n>m$. We then prove that the Sudoku solution is the sparsest solution of ${mmb{Ax}}={mmb b}$, which can be obtained by $l_{0}$ norm minimization, i.e. $minlimits_{mmb x}Vert{mmb x}Vert_{0}$ s.t. ${mmb{Ax}}={mmb b}$. Instead of this minimization problem, inspired by the sparse representation literature, we solve the much simpler linear programming problem of minimizing the $l_{1}$ norm of ${mmb x}$, i.e. $minlimits_{mmb x}Vert{mmb x}Vert_{1}$ s.t. ${mmb{Ax}}={mmb b}$, and show numerically that this approach solves representative Sudoku puzzles.   相似文献   

8.
We present a detailed experimental and theoretical study of the ultrahigh repetition rate AO $Q$ -switched ${rm TEM}_{00}$ grazing incidence laser. Up to 2.1 MHz $Q$-switching with ${rm TEM}_{00}$ output of 8.6 W and 2.2 MHz $Q$ -switching with multimode output of 10 W were achieved by using an acousto-optics $Q$ -switched grazing-incidence laser with optimum grazing-incidence angle and cavity configuration. The crystal was 3 at.% neodymium doped Nd:YVO$_{4}$ slab. The pulse duration at 2 MHz repetition rate was about 31 ns. The instabilities of pulse energy at 2 MHz repetition rate were less than ${pm}6.7hbox{%}$ with ${rm TEM}_{00}$ operation and ${pm}3.3hbox{%}$ with multimode operation respectively. The modeling of high repetition rate $Q$-switched operation is presented based on the rate equation, and with the solution of the modeling, higher pump power, smaller section area of laser mode, and larger stimulated emission cross section of the gain medium are beneficial to the $Q$-switched operation with ultrahigh repetition rate, which is in consistent with the experimental results.   相似文献   

9.
A 0.9-V input discontinuous-conduction-mode (DCM) boost converter delivering 2.5-V and 100-mA output is presented. A novel low-voltage pulse-width modulator is proposed. The modulator can be directly powered from the 0.9-V input instead of using the 2.5-V output as in general modulator designs. Sophisticated low-voltage analog blocks, which normally consume a large amount of power and chip area, are not required in the modulator. The impact of output-voltage ripple and transient-induced output-voltage perturbation on the operation of analog blocks inside the modulator is eliminated. Boost converter start-up sequence is also greatly simplified. A CMOS-control rectifier (CCR) is also proposed to improve converter power efficiency. The CCR is used to replace the conventional rectifying switch to provide adaptive dead-time, which helps to minimize charge-sharing loss and body-diode conduction loss. Corresponding thermal stress on the rectifying switch is hence minimized. The CCR also enables the use of small off-chip inductor and capacitor at sub-MHz switching frequency to improve light-load efficiency. This converter has been implemented in a 0.35- $mu$m CMOS process. It is designed to operate at ${sim}$ 667 kHz with a 1 $mu$ H inductor and 4.7 $mu$ F output capacitor to reduce both switching loss and form factor. Experimental results prove that the converter can be directly powered from 0.9-V input with ${sim}$ 85% efficiency at 100-mA output.   相似文献   

10.
The flyback converter is one of the most attractive isolated converters in small power applications because of its simple structure. However, it suffers from a high device stress and a large transformer size. To relieve these drawbacks, a high-efficient pulsewidth modulation resonant single-switch isolated converter is proposed. The proposed converter derives the power using the resonance between transformer leakage inductor and secondary capacitor without a large filter inductor. Therefore, the switch turn-off loss and snubber loss are reduced by a sinusoidal-shaped current. Moreover, it has a reduced voltage stress on the secondary diodes without a dissipative snubber and a smaller transformer size. Therefore, it features a simple structure, low cost, and high efficiency. The operational principle and characteristics of the proposed converter are presented and verified experimentally with a $300 {sim} 400 {rm V}_{rm dc}$ input, $70 {rm V}_{rm dc}/1.5 {rm A}$ output prototype converter.   相似文献   

11.
A Fully Integrated 5 GHz Low-Voltage LNA Using Forward Body Bias Technology   总被引:2,自引:0,他引:2  
A fully integrated 5 GHz low-voltage and low-power low noise amplifier (LNA) using forward body bias technology, implemented through a 0.18 $mu{rm m}$ RF CMOS technology, is demonstrated. By employing the current-reused and forward body bias technique, the proposed LNA can operate at a reduced supply voltage and power consumption. The proposed LNA delivers a power gain (S21) of 10.23 dB with a noise figure of 4.1 dB at 5 GHz, while consuming only 0.8 mW dc power with a low supply voltage of 0.6 V. The power consumption figure of merit $(FOM_{1})$ and the tuning-range figure of merit $(FOM_{2})$ are optimal at 12.79 dB/mW and 2.6 ${rm mW}^{-1}$, respectively. The chip area is 0.89 $,times,$0.89 ${rm mm}^{2}$.   相似文献   

12.
A low power audio oversampling $Sigma Delta $ digital-to-analog converter (DAC) with a three-level $(+1,~0,-1)$ dynamic-element-matching (DEM) technique and an inter-symbol interference-free (ISI) output stage is presented. Solutions for design challenges such as ISI, clock jitter sensitivity, and out-of-band noise are presented. The converter is fabricated in a 0.18 $mu{hbox {m}}$ CMOS process, occupies 0.55 ${hbox {mm}}^{2}$, achieves 108 dB dynamic range, $-98~{rm dB ~THD}+{rm N}$ while consumes a total of 1.1 mW per channel at 1.8 V supply.   相似文献   

13.
We provide the first report of the structural and electrical properties of $hbox{TiN/ZrO}_{2}$/Ti/Al metal–insulator–metal capacitor structures, where the $hbox{ZrO}_{2}$ thin film (7–8 nm) is deposited by ALD using the new zirconium precursor ZrD-04, also known as Bis(methylcyclopentadienyl) methoxymethyl. Measured capacitance–voltage ($C$$V$) and current–voltage ( $I$$V$) characteristics are reported for premetallization rapid thermal annealing (RTP) in $hbox{N}_{2}$ for 60 s at 400 $^{circ}hbox{C}$, 500 $^{circ}hbox{C}$, or 600 $^{ circ}hbox{C}$. For the RTP at 400 $^{circ}hbox{C}$ , we find very low leakage current densities on the order of nanoamperes per square centimeter at a gate voltage of 1 V and low capacitance equivalent thickness values of $sim$ 0.9 nm at a gate voltage of 0 V. The dielectric constant of $ hbox{ZrO}_{2}$ is 31 $pm$ 2 after RTP treatment at 400 $^{circ}hbox{C}$.   相似文献   

14.
A $K$-band distributed frequency doubler is developed in 0.18 $mu{rm m}$ CMOS technology. This doubler combines the distributed topology for broadband characteristics and current-reuse technique to improve the conversion gain. The high-pass drain line and high-pass inter-stage matching network are used to obtain a good fundamental rejection. A measured conversion gain of better than ${- 12.3}~{rm dB}$ is obtained, and the fundamental rejection is better than 30 dB for the output frequency between 18 and 26 GHz. The dc power consumption is 10.5 mW with a chip size of 0.55$,times,$0.5 ${rm mm}^{2}$.   相似文献   

15.
A compact-sized electrically tunable ${rm TE}$- ${rm TM}$ mode splitter composed of a mode converter and an asymmetric Y-branch structure is presented. The asymmetric Y-branch consists of a straight and a bent waveguides to split two polarization modes based on the mode-sorting effect. To shorten the device length, a simplified coherently coupled-bending structure is utilized for the bent waveguide. Experimental results show that the device length is reduced about 52%, extinction ratios of both ${rm TE}$ and ${rm TM}$ modes are higher than 25 dB, yet the applied voltage is not significantly increased.   相似文献   

16.
The design of a 100 kHz frequency reference based on the electron mobility in a MOS transistor is presented. The proposed low-voltage low-power circuit requires no off-chip components, making it suitable for application in wireless sensor networks (WSN). After a single-point calibration, the spread of its output frequency is less than 1.1% (3$sigma $) over the temperature range from $-{hbox{22}},^{circ}{hbox{C}}$ to 85$,^{circ}{hbox{C}}$ . Fabricated in a baseline 65$~$nm CMOS technology, the frequency reference circuit occupies 0.11$ hbox{mm}^{2}$ and draws 34 $ muhbox{A}$ from a 1.2 V supply at room temperature.   相似文献   

17.
High-electron mobility transistors (HEMTs) based on ultrathin AlN/GaN heterostructures with a 3.5-nm AlN barrier and a 3-nm $hbox{Al}_{2}hbox{O}_{3}$ gate dielectric have been investigated. Owing to the optimized AlN/GaN interface, very high carrier mobility $(sim!!hbox{1400} hbox{cm}^{2}/hbox{V}cdothbox{s})$ and high 2-D electron-gas density $(sim!!kern1pthbox{2.7} times hbox{10}^{13} /hbox{cm}^{2})$ resulted in a record low sheet resistance $(sim !!hbox{165} Omega/hbox{sq})$. The resultant HEMTs showed a maximum dc output current density of $simkern1pt$2.3 A/mm and a peak extrinsic transconductance $g_{m,{rm ext}} sim hbox{480} hbox{mS/mm}$ (corresponding to $g_{m,{rm int}} sim hbox{1} hbox{S/mm}$). An $f_{T}/f_{max}$ of 52/60 GHz was measured on $hbox{0.25} times hbox{60} muhbox{m}^{2}$ gate HEMTs. With further improvements of the ohmic contacts, the gate dielectric, and the lowering of the buffer leakage, the presented results suggest that, by using AlN/GaN heterojunctions, it may be possible to push the performance of nitride HEMTs to current, power, and speed levels that are currently unachievable in AlGaN/GaN technology.   相似文献   

18.
Low-temperature polycrystalline-silicon thin-film transistors (LTPS-TFTs) with high- $kappa$ gate dielectrics and plasma surface treatments are demonstrated for the first time. Significant field-effect mobility $mu_{rm FE}$ improvements of $sim$86.0% and 112.5% are observed for LTPS-TFTs with $hbox{HfO}_{2}$ gate dielectric after $hbox{N}_{2}$ and $ hbox{NH}_{3}$ plasma surface treatments, respectively. In addition, the $hbox{N}_{2}$ and $ hbox{NH}_{3}$ plasma surface treatments can also reduce surface roughness scattering to enhance the field-effect mobility $mu_{rm FE}$ at high gate bias voltage $V_{G}$, resulting in 217.0% and 219.6% improvements in driving current, respectively. As a result, high-performance LTPS-TFT with low threshold voltage $V_{rm TH} sim hbox{0.33} hbox{V}$, excellent subthreshold swing S.S. $sim$0.156 V/decade, and high field-effect mobility $mu_{rm FE} sim hbox{62.02} hbox{cm}^{2}/hbox{V} cdot hbox{s}$ would be suitable for the application of system-on-panel.   相似文献   

19.
Effects of silicon nitride (SiN) surface passivation by plasma enhanced chemical vapor deposition (PECVD) on microwave noise characteristics of AlGaN/GaN HEMTs on high-resistivity silicon (HR-Si) substrate have been investigated. About 25% improvement in the minimum noise figure $(NF_{min})$ (0.52 dB, from 2.03 dB to 1.51 dB) and 10% in the associate gain $(G_{rm a})$ (1.0 dB, from 10.3 dB to 11.3 dB) were observed after passivation. The equivalent circuit parameters and noise source parameters (including channel noise coefficient $(P)$, gate noise coefficient $(R)$, and their correlation coefficient $(C)$ ) were extracted. $P$ , $R$ and $C$ all increased after passivation and the increase of C contributes to the decrease of the noise figure. It was found that the improved microwave small signal and noise performance is mainly due to the increase of the intrinsic transconductance $(g_{{rm m}0})$ and the decrease of the extrinsic source resistance $(R_{rm s})$.   相似文献   

20.
In this paper, the performance of a two-port single-mode fiber–silicon wire waveguide coupler module which utilizes an identical spot-size converter (SSC) at the input and output ports is reported. Each of the silicon (Si)-based SSCs comprised cascaded horizontal linear and vertical nonlinear up-tapers measured 300 and 200 $mu$ m in length, respectively, in a common silicon-on-insulator (SOI) substrate. The structural parameters of the tapers were designed for compactness and relaxed tolerance to fabrication errors. The total length of the two-port coupler module was 1000 $mu$ m plus the variable length of the wire waveguide connecting the two SSCs. The mode-field diameter (MFD) of the Si-wire waveguide, 0.32$,times,$0.46 $mu$m $^{2}$, was transformed to the diameter of 2.8$,times,$ 8.0 $mu$ m$^{2}$ at the wavelength of 1.55 $mu$ m (corresponding to an area expansion of about 150 times) and vice versa by the SSCs with a net transmission loss of 4.1 dB/port. The field-mismatch loss between the SSC and the single-mode fiber with the MFD of 5.2 $mu$m was 2.1 dB/port.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号