首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 218 毫秒
1.
采用离散元法研究不同胶结砂土的宏观力学特性以及微观胶结破坏,其中一种胶结砂土胶结特性由离散元商业软件PFC2D中的胶结接触模型(Contact bond model)进行控制,另一种则采用蒋明镜等提出的无厚度改进胶结接触模型(改进的蒋氏模型)控制.首先,将改进的蒋氏模型引入PFC2D;其次,使用PFC2D对不同胶结强度和不同围压下的上述两种胶结砂土进行双轴压缩试验模拟,对比分析了两种不同胶结砂土的模拟结果.结果表明蒋氏试样(胶结特性由改进的蒋氏模型控制)应变软化和体积剪胀显著,峰值内摩擦角基本随胶结强度增大而增大;而PFC试样(胶结特性由Contact bond model控制)在高胶结强度时应变软化和体积剪胀性比较显著,低胶结强度时表现为应变硬化和体积剪缩,峰值内摩擦角随胶结强度增加而减小.离散元模拟结果在一定程度上与已有室内实测结果相符,蒋氏试样更能反映胶结砂土的主要力学特性.由胶结破坏微观信息统计可知,蒋氏试样中胶结点受拉破坏率远大于受剪破坏率,而PFC试样中两者相当,且蒋氏试样中的总胶结点破坏速率峰值要大于PFC试样.通过对改进的蒋氏模型参数分析可知,低围压条件下,试样宏观力学特性与胶结破坏形式对切向胶结强度与法向胶结强度的比值较为敏感.  相似文献   

2.
结构性砂土粒间胶结效应的二维数值分析   总被引:1,自引:0,他引:1  
将理想胶结颗粒接触力学特性的测试结果引入到离散元胶结接触模型中,对结构性砂土粒间胶结效应进行离散元数值模拟。首先,胶结颗粒被理想化为两铝棒在指定部位形成胶结,通过一系列加载试验(拉伸、压缩、压剪)获得胶结铝棒在不同应力路径下的接触力学响应。随后,将测试结果提炼总结后引入到自行开发的二维离散元程序 NS2D 中,用以模拟不同初始密度和胶结强度的结构性砂土等向压缩试验。最后,通过与人工胶结砂土的试验数据进行比较,对文中的数值模拟结果进行验证。研究表明:离散元数值模拟能够有效的捕捉结构性砂土的主要力学特性,即屈服强度和体积模量均随初始密度和胶结强度的变化而变化,且胶结试样的屈服强度与试样内部颗粒间胶结点破坏率密切相关。  相似文献   

3.
天然或人工胶结的存在能够提高砂土的抗液化能力,从宏微观尺度对其动力学性质进行研究具有重大意义。将已有的三维完整胶结接触模型引入到三维离散元程序中,对胶结砂土不排水循环三轴剪切试验进行三维离散元模拟,研究颗粒间胶结、循环应力比对离散元试样宏微观力学性质的影响。研究结果表明,胶结的存在能够抑制轴应变和孔压的发展,提高砂土的抗液化强度,循环应力比与液化振次之间具有指数函数关系,证实了本文离散元模拟能够反映胶结砂土的宏观动力学性质。在微观尺度上,当循环应力比较小时,胶结试样内部仅有极少量胶结发生破坏,力学配位数基本不变,外界输入功主要用于增加颗粒和胶结弹性能。对于特定胶结程度的试样,在初始液化发生之前,随循环应力比增加,试样内部胶结破坏更为剧烈,力学配位数下降速率更快,颗粒和胶结弹性能更快地趋向于0,颗粒摩擦耗能、弯转耗能、扭转耗能更快地达到最大值,而破坏胶结接触点、胶结接触点和无胶结接触点法方向的空间分布更快地趋向于各向同性性质。  相似文献   

4.
首先,引入笔者等[16-17]所提出的微观胶结模型用以反映能源土颗粒之间水合物微观胶结接触力学特性;其次,采用C++语言将模型程序化,建立同商业软件PFC2D的程序接口,将模型引入离散单元法中;然后,通过简化计算方法确定胶结宽度随水合物浓度的变化规律,进而确定水合物微观胶结参数;最后,根据所确定的胶结参数,针对不同水合物浓度试样进行能源土宏观力学特性离散元双轴试验模拟,并从应力应变、体积应变、水合物对能源土弹性模量的影响等方面与Masui等[4]所进行的能源土室内三轴试验进行对比分析。结果表明:所选择胶结模型及微观胶结参数能有效反映深海能源土宏观力学规律;能源土峰值强度、弹性模量均随水合物浓度增加而增加,体积膨胀随水合物浓度的增加越来越显著。  相似文献   

5.
利用离散元法对结构性砂土的三轴试验进行了三维数值模拟并对其宏观特性进行了分析。首先将考虑胶结尺寸(宽度和厚度)的三维胶结接触模型导入离散元软件PFC3D中,对结构性砂土数值试样进行三轴试验数值模拟;然后对比分析离散元模拟与室内试验结果;最后从宏观力学角度对试验结果进行了分析。离散元模拟结果表明:结构性砂土与无胶结松散砂土表现不同,其在低围压时表现出应变软化和体积剪胀特征,并随胶结含量的增加或围压的减少而愈发显著,在高围压时则呈应变硬化和体积剪缩现象;低平均应力时,随胶结含量的增加,试样峰值内摩擦角、黏聚力以及内摩擦角均增加,其中黏聚力增加较为明显,随着平均应力的增加,峰值强度包线逐渐趋向于无胶结土。  相似文献   

6.
采用三维离散元法从宏微观尺度研究胶结砂土在真三轴试验条件下的强度特性。首先,将一个已有的三维胶结接触模型引入到离散元程序中,对胶结砂土数值试样进行真三轴试验离散元模拟(平均应力p保持不变,包括结构屈服前p=100 kPa和屈服后p=800 kPa);然后,对比分析离散元模拟结果和室内试验结果,并验证已有的胶结材料破坏准则;最后,从微观尺度对强度特征给予机制性分析。结果表明:当p小于结构屈服应力py时,应力–应变关系表现为显著的应变软化,当ppy时,应力–应变关系则呈现为应变硬化现象,且均受中主应力系数b的影响。归一化的峰值强度q_(peak)随b增加而逐渐减小,该变化规律与已有室内试验结果符合较好。Modified Lade-Duncan准则可以较好地预测p=100,800 kPa时的峰值强度,Extended SMP准则能较好地预测p=100 kPa时的峰值强度,但高估了p=800 kPa时的峰值强度。在微观尺度上,胶结试样的宏观力学特性主要受强接触点控制;随b增加,颗粒间法向接触力分布逐渐不均匀,导致胶结材料强度降低。  相似文献   

7.
在岩土破损力学和临界状态土力学框架内,遵循宏微观土力学的研究思路,建立了胶结砂土三维本构模型。定义与重塑砂土屈服面几何相似但尺寸扩大的胶结砂土屈服面;采用经三维离散元验证的Lade-Duncan强度准则作为临界状态强度面;基于胶结材料微观力学理论并结合三维离散元模拟结果,获得具有微观力学机制的胶结破损规律;将胶结破损规律引入到重塑砂土的硬化规律和流动法则,得到胶结砂土的硬化规律和流动法则。将该本构模型应用于人工制备胶结砂土室内常规三轴压缩试验和等平均应力真三轴试验的模拟,初步验证了该模型的适用性。  相似文献   

8.
含填充型水合物的砂性能源土可视为特殊的散粒体材料(砂粒和水合物颗粒混合物),具有明显的非连续特征。在离散元中若采用团粒(胶结成团的颗粒组)模拟填充水合物颗粒则需合理确定团粒结构内颗粒间胶结模型参数。为此,基于前人的室内纯水合物三轴试验资料进行离散元建模与参数反演。结果表明,宜采用松散且颗粒间摩擦系数较小的试样模拟水合物块体,当颗粒间摩擦系数小于等于0.0时,可确保无胶结试样的内摩擦角小于室内试验获得的纯水合物内摩擦角。胶结刚度只需在较小范围变化即可反映相同温度不同围压条件下的弹性特性,且微观刚度参数与胶结强度参数的相互作用较小,可以假定二者相互独立。通过选取不同的微观胶结强度值进行不同围压下的三轴压缩试验,建立微观胶结强度参数与宏观参数(内摩擦角和黏聚力)之间的关系,从而确定与室内试验强度特性相符合的微观胶结强度值,实现甲烷水合物三轴试验离散元模拟;由体变规律可知,甲烷水合物在发生剪胀前均存在一个初始的体积收缩阶段,且剪胀特性随着围压的减小而呈现增强趋势。通过微观变量颗粒接触方向组构的分布图可知,随着轴向应变增大,颗粒间接触主方向朝竖直方向偏转,表现出明显的各向异性特性。随着轴向应变的增大,颗粒间胶结残余率变小,表明试样逐步破坏。  相似文献   

9.
岩石微观胶结模型及离散元数值仿真方法初探   总被引:4,自引:1,他引:3  
 基于胶结铝棒接触力学特性的系列室内微观试验,提出用于模拟岩石的微观胶结接触模型,并将该模型引入二维离散元商业软件PFC2D,模拟岩石室内单双轴压缩、直接拉伸和巴西试验,并将数值试验结果与室内试验实测结果进行对比分析,验证该数值方法在反映岩石基本力学特性方面的有效性,研究结果表明,基于水泥微观胶结模型的离散单元法能够合理地描述岩石的主要力学特性;通过胶结破坏数目与轴向应力之间的关系曲线可以识别岩石裂纹扩展的规律及各个阶段,并能够确定裂纹扩展过程中的起裂应力、裂纹损伤应力和峰值应力。  相似文献   

10.
岩石微观颗粒接触特性的试验研究   总被引:2,自引:0,他引:2  
 微观上,岩石是由许多大小不等的颗粒和粒间填充的胶结物构成,不同位置的胶结厚度不同。岩石的这种微观结构特征从根本上决定其宏观力学响应,从微观尺度出发采用离散元数值模拟有利于探索岩石宏观力学特性的微观机制。基于这一思路,通过室内铝棒胶结模型试验,研究不同胶结厚度下胶结颗粒在压剪扭加载作用下的接触力学特性,发现胶结铝棒在不同胶结物质、不同胶结厚度下的力学响应均呈现出一定的相似性。将蒋明镜提出的岩石微观胶结模型与D. O. Potyondy和P. A. Cundall提出的岩石微观接触力学模型进行对比分析发现,蒋明镜模型提出的破坏准则与岩石的实际较为符合,进一步为离散元模拟岩石奠定基础。  相似文献   

11.
This paper presents an investigation into the inter-particle bonding effects on the mechanical behaviors of structured sands using the distinct element method (DEM) incorporating measured inter-particle mechanical behaviors. The inter-particle mechanical behaviors are first studied by testing on idealized bonded granules under designed loading paths, which demonstrates a linear pre-failure force–displacement relationship and normal force-dependent shear strength of bonded particles. Then a modified contact model is proposed by employing different force–displacement laws for pre-failure and post-failure bonded particles, in which a failure criterion is introduced to describe the inter-particle debonding. The third part deals with the DEM numerical simulation of isotropic and biaxial compression tests to investigate the bonding effects on the mechanical behaviors of bonded sands, where the proposed model has been verified capable of capturing the main mechanical behaviors of bonded sands. In addition, the investigation into the microscopic responses quantitatively figures out the effects of inter-particle cementation on the mechanical behaviors and the loss of soil structure.  相似文献   

12.
复杂应力下两种胶结颗粒微观力学模型的试验研究   总被引:3,自引:0,他引:3  
将胶结颗粒理想化为两铝棒在指定位置处形成胶结,根据铝棒间胶结物厚度的不同,分别定义为有厚度胶结颗粒和无厚度胶结颗粒,对上述两种胶结颗粒进行一系列力学试验(包括:拉伸、压缩、压剪、压扭和复杂应力试验),从而对理想胶结颗粒的微观力学特性进行试验研究。试验结果表明:胶结厚度和法向压力对胶结颗粒的力学性能影响显著,随着胶结厚度的增大,试样的抗拉强度和延性均增大,其抗压特性由塑性硬化向塑性软化转变。无厚度试样抗剪和抗扭强度始终随法向压力的增大而增大,而有厚度试样则先随法向压力的增大而增大,当法向压力超过某一数值后,其强度又随着法向压力的增大而减小。在三维应力空间中(法向压力–扭矩–剪力)无厚度胶结颗粒的强度包线呈椭圆抛物面状,而有厚度胶结颗粒强度包线呈水滴状。  相似文献   

13.
不同厚度及边界胶结颗粒抗压特性离散元分析   总被引:1,自引:0,他引:1  
为研究胶结厚度和边界条件对胶结颗粒抗压特性的影响,利用离散元数值方法模拟了胶结颗粒的室内微观压缩试验,并与室内试验结果进行了对比。结果表明,胶结厚度对胶结颗粒抗压强度影响较大,抗压强度随胶结厚度的增加呈指数形式下降并趋近恒定值,这一现象与室内试验结果吻合较好。而胶结厚度的影响程度与边界约束有关,当边界约束较强时微观剪切破坏占主导,抗压强度较高。另外,边界形状对微观胶结破坏模式 (拉伸破坏或剪切破坏)有一定影响,平面边界由于边界约束效应更强,导致胶结颗粒的抗压强度更高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号