首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tm3+ doped zinc silicate glass-ceramics composed of SiO2-Al2O3-ZnO-K2O-Tm2O3 embedded with ZnO nanocrystals were successfully fabricated by melt-quenching method with subsequent heat treatment. Tm3+ ions and ZnO nanocrystals were introduced as blue and yellow luminescence centers, respectively. The effects of heat treatment, excitation wavelength and Tm3+ doping concentration on the photoluminescence behaviors of these glass-ceramics were studied. Short-time (5 minutes) heat treatment was considered as the optimal heat treatment time, which facilitates simultaneously emitting narrow blue peak located at 453 nm and a broad yellow band centered at 580 nm. Blue and yellow emissions could be attributed to the 1D2 → 3F4 transition of Tm3+ and Zni/Oi-related defect emission of ZnO nanocrystals, respectively. The combination of these two emissions allows the realization of white light emitting in the glass-ceramic samples. Furthermore, tunable luminescent color and chromaticity coordinates, including yellow, white and blue, can be realized by varying the pumping wavelengths as well as the content of Tm3+ dopant in the glass matrix. Nearly perfect white light emission with Commission Internationale de l'Eclairage coordinate (x = 0.33, y = 0.32) was achieved for the 0.05 mol% Tm3+ doped glass-ceramic embedding ZnO nanocrystals by heat treatment at 750°C for 5 minutes under the excitation of 360 nm. These luminescent glass-ceramics doped with Tm3+ ion and ZnO nanocrystals could be a promising candidate for white light emitting devices under near-ultraviolet excitation.  相似文献   

2.
《Ceramics International》2020,46(15):23719-23727
A series of Zn1-xHfxO (0 ≤ x ≤ 0.1) nanocrystals was synthesized via the N-(methyl)mercaptoacetamide assisted microwave approach. The influence of the Hf dopant on the crystal structure, Raman lattice vibrations, and luminescent emission spectra was studied. XRD measurements revealed that the inclusion of the Hf dopant in the Zn cites instigated the expansion of the ZnO lattice while preserving its hexagonal structure. The XRD, SEM and DLS measurements demonstrated that the Hf dopant increased the size of ZnO nanocrystals from 2.5 ± 0.1 nm to 11.5 ± 0.1 nm. The EDS spectra confirmed the stoichiometry of the prepared samples. The zeta potential measurement revealed that the Hf dopant is incorporated within the ZnO nanostructure. The Raman spectra showed that the Hf dopant was efficiently incorporated into the ZnO crystals without altering its internal structure. The UV–vis. spectroscopy indicated that the partial substitution of Zn atoms by Hf atoms leads to modulation of the optical bandgap. Luminescence measurements revealed that the inclusion of the Hf dopant in the Zn cites resulted in suppression of the ZnO crystal defects. The XPS measurements confirmed that the inclusion of Hf dopant in the Zn cites resulted in a reduction of the amount of oxygen vacancy which actes as a trap centers for the photogenerated electrons. Therefore, a modulation of the visible spectra occurred, while the Hf dopant did not affect the intensity of UV-emission band of ZnO nanocrystals. Therefore, the Zn1-xHfxO (0 ≤ x ≤ 0.1) nanocrystals are favorable as potential candidates for both catalytic and luminescent device applications.  相似文献   

3.
We report on a new approach to the synthesis of Eu3+ doped TiO2 nanocrystals and prolate nanospheroids. They were synthesized by shape transformation of hydrothermally treated titania nanotubes at different pH and in the presence of Eu3+ ions. The use of nanotubes as a precursor to the synthesis of Eu3+ doped TiO2 nanocrystals and prolate nanospheroids opens the possibility of overcoming the problems related to molecular precursors. The shapes and sizes of the nanotubes, Eu3+ doped TiO2 nanocrystals and prolate nanospheroids were characterized by transmission electron microscopy (TEM) technique. Crystal structures of the resultant powders were investigated by X-ray diffraction (XRD) analysis. The percentage ratio of Eu3+ to Ti4+ ions in doped nanocrystals was determined using inductively coupled plasma atomic emission spectroscopy. The optical characterization was done by using fluorescence and ultraviolet-visible reflection spectroscopies. An average size of faceted Eu3+ doped TiO2 nanocrystals was 13 nm. The lateral dimensions of Eu3+ doped TiO2 prolate nanospheroids varied from 14 to 20 nm, while the length varied from 40 to 80 nm, depending on precursor concentrations. The XRD patterns revealed the homogeneous anatase crystal phase of Eu3+ doped TiO2 nanocrystals and prolate nanospheroids independently of the amount of dopant. A postsynthetic treatment (filtration or dialysis) was applied on the dispersions of the doped nanoparticles in order to study the influence of the dopant position on photoluminescence (PL) spectra. In the red spectral region, room temperature PL signals associated with 5D0  7FJ (J = 1–4) transitions of Eu3+ were observed in all samples. The increased contribution of dopants from the interior region of dialyzed nanocrystals to photoluminescence was confirmed by the increase of R value.  相似文献   

4.
《Ceramics International》2022,48(5):6103-6115
The synthesis of silver doped cobalt oxide nanoparticles by microwave-assisted method and their structural, optical, antibacterial activities are presented in this study. The doping concentrations were chosen as 5, 10, 15, and 20 wt percentages. The sample was undergone powder X-ray diffraction studies and the result shows the good crystalline nature of the sample. Also, the average crystallite size increases from 13.95 nm, 21.26 nm, 26.13 nm, and 28.35 nm with different doping concentrations. The transmission electron microscopy image shows cubic and spherical morphology. The optical properties were tested by UV–vis–NIR absorption spectrum. It indicates the decrease of band gap value. From the antibacterial activity studies, the 20 wt % Ag doped nanoparticles exhibit better activity.  相似文献   

5.
We report the synthesis of Sr2+ doped Ba0.9-xCa0.1SrxTi0.8Zr0.2O3 nano-ceramics by the conventional solid-state reaction method. Phase formation of single-phase orthorhombic ABO3 type structure with space group P2mm was confirmed through X-ray diffraction (XRD). The crystallite size increased with increasing doping concentration from 25.46 nm to 52.96 nm as calculated by the Scherrer formula and from 47.1 nm to 88.5 nm by the Williamson-Hall method. The lattice parameter, dislocation density, and apparent density decreased with doping, except for when x = 0.05. The porosity was found to increase up to 16.8% with increasing doping. Field emission scanning electron microscopy (FESEM) shows that samples exhibit a flake-like structure. X-ray photoelectron spectroscopy (XPS) analysis confirms that Sr-ions occupy the Ca-site, for x = 0.05, and force the Ca ions to occupy the Ti-sites. For the higher concentration of Sr, i.e. x ≥ 0.15, no more forced substitution is observed and Sr-ions occupy the Ba-site only, which decreases oxygen vacancies. Diffused rings observed in selective area electron diffraction (SAED) patterns indicate the high crystalline order of the samples. The Fourier-transformed infrared spectroscopy (FTIR) measurements show a single broad peak between 544 and 594 cm?1 for all the compositions, while two prominent peaks are observed for the composition x = 0.05 at 528 cm?1 and 592 cm?1. The Raman spectra show a shift in the most prominent peak, observed approximately 517 cm?1.  相似文献   

6.
Zn0.9Cd0.1S nanoparticles doped with 0.005–0.24 M cobalt have been prepared by co-precipitation technique in ice bath at 280 K. For the cobalt concentration >0.18 M, XRD pattern shows unidentified phases along with Zn0.9Cd0.1S sphalerite phase. For low cobalt concentration (≤0.05 M) particle size, d XRD is ~3.5 nm, while for high cobalt concentration (>0.05 M) particle size decreases abruptly (~2 nm) as detected by XRD. However, TEM analysis shows the similar particle size (~3.5 nm) irrespective of the cobalt concentration. Local strain in the alloyed nanoparticles with cobalt concentration of 0.18 M increases ~46% in comparison to that of 0.05 M. Direct to indirect energy band-gap transition is obtained when cobalt concentration goes beyond 0.05 M. A red shift in energy band gap is also observed for both the cases. Nanoparticles with low cobalt concentrations were found to have paramagnetic nature with no antiferromagnetic coupling. A negative Curie–Weiss temperature of −75 K with antiferromagnetic coupling was obtained for the high cobalt concentration.  相似文献   

7.
B-site aliovalent modification of AgNbO3 with a nominal composition of Ag(Nb1-xMx)O3-x/2 (x = 0.01, M = Ti, Zr and Hf) was prepared. The effects of dopants on microstructure, dielectric, ferroelectric and conduction properties were investigated. The results indicate that the introduction of acceptor dopant does not lead to grain coarsening. Zr4+ and Hf4+ doping are beneficial to stabilize the antiferroelectric phase of AgNbO3. Among all the samples, Ti4+ doped AgNbO3 has the minimum resistivity while Hf4+ doped AgNbO3 has the maximum resistivity, therefore, Hf4+ doped AgNbO3 has high BDS. The XPS results indicate that the conduction behaviour is associated with the concentration of oxygen vacancies. This work hints that acceptor dopant is also effective on the microstructure control and chemical modification of AgNbO3-based ceramics.  相似文献   

8.
Dye sensitized solar cell (DSSC) is an emerging energy harvesting tool which converts direct sunlight into electrical energy. These cells have much better properties in contrast with silicon based solar cells because of their flexible nature, light weight, low cost, environment friendly nature, and involvement of a simple manufacturing process. Since, a photoanode is the backbone of DSSC, we synthesized a pure and 1% manganese (Mn) doped titanium dioxide (TiO2) films by sol-gel method which are irradiated with silver (Ag) ions at two different concentrations (2 × 1014 and 4 × 1014) ions-cm?2. X-ray diffraction revealed that Mn doping followed by Ag irradiation transformed TiO2 from pure anatase to rutile phase. Ultraviolet–visible spectroscopy exposed the reduction in band gap of TiO2 film during this doping and irradiation process. Therefore, absorption is enhanced with red shift in UV-range. When these films are used as a photoanode in DSSC, 1% Mn doped TiO2 film exposed with Ag at the concentration of (2 × 1014) ions-cm?2 exhibited maximum efficiency of 2.40%.  相似文献   

9.
《Ceramics International》2023,49(8):12231-12239
Ultra-rapid microwave-assisted hydrothermal synthesis was performed, zinc oxide nanoparticles were fabricated and doped with gallium. Different times (5, 15, and 30 min) and concentrations of doped Ga (1, 3, and 6%) were used to improve their characteristic properties. In addition, the relation between time/dopant was analyzed. The samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and UV–Vis diffuse reflectance spectroscopy. Photoluminescence (PL) to verify number of defects. SEM analysis showed the formation of nanorods morphology even with a short synthesis time. The X-ray diffractograms and Raman spectra suggest the successful insertion of Ga into the ZnO lattice. The crystallite size obtained by doping was between 36 and 50 nm. The lattice parameters determined by the Rietveld refinement confirmed the formation of a wurtzite hexagonal structure. The band gap range found was 3.12–3.22 eV, which increases the potential of ZnO for optical applications. The presence of defects as result of doping was confirmed by PL. The microstructural changes of the material are enhanced by doping, which causes the photocurrent to increase from 0,002 to 0.012 mA/cm2 in doped ZnO. The synthesis time and Ga doping facilitated the production of ZnO nanoparticles with improved properties.  相似文献   

10.
In this study, boron doped and undoped poly (vinyl) alcohol/bismuth–gadolina acetate (PVA/Bi–Gd) nanofibers were prepared using electrospinning technique then calcinated at 800 °C for 2 h. The originality of this study is the addition of boron to metal acetates. The effects of boron doping were investigated in terms of solution properties, morphological changes and thermal characteristics. The characteristics of the fibers were investigated with FT-IR, XRD, SEM and BET. The addition of boron did not only increase the thermal stability of the fibers, but also their diameters, which yielded stronger fibers. XRD analyses showed that boron doping increased the peak intensities and indicated that the boron doping enhanced the crystallite size. Moreover, no shifts were noticed in diffraction angles for boron doped and undoped samples. Therefore, boron doping did not significantly alter the lattice spacing. The SEM micrograph of the fibers showed that the addition of boron resulted in the formation of cross-linked bright-surfaced fibers. The average fiber diameter for boron doped and undoped fiber mats were 204 and 123 nm, respectively. Also, grain diameters of boron doped and undoped nanocrystalline sintered powders were measured as 140 and 118 nm, respectively. The BET results showed that boron undoped and doped Bi2O3–La2O3 nanocrystalline powder ceramic structures sintered at 800 °C have surface areas of 59.72 and 39.80 m2/g, respectively.  相似文献   

11.
《Ceramics International》2020,46(17):27308-27317
This study explores the significance of dopant location in a doped TiO2 nanostructure in ascertaining its photocatalytic properties. The un-doped TiO2, boron-doped TiO2 (B–TiO2) and nitrogen-doped TiO2 (N–TiO2) photocatalysts were synthesized (with variable dopant concentrations) via sol-gel method. The photocatalysts were further characterized for structural, surface, and physico-chemical properties in reference to their influence on photocatalytic properties. The results of X-ray diffraction (XRD), micro Raman, Energy dispersive X-ray technique (EDX), X-ray photoelectron spectroscopy (XPS), and Fourier Transform infrared spectroscopy (FTIR) confirmed the existence of B and N atoms in the TiO2 crystal lattice. The results also indicated that the B and N doping promoted the formation of rutile phase in doped TiO2. Further, B doping leads to decrease in the surface area whereas N doping leads to increase in surface area of TiO2. The UV–Vis DRS analysis revealed that a red shift in absorption band edge occurs upon B and N doping. The band gap values also decreased to 2.96 and 2.27 eV in B–TiO2 and N–TiO2, respectively in comparison to 2.98 for un-doped TiO2. The photocatalytic degradation studies of diclofenac sodium (DCLF) were conducted to examine the effect of dopant role on the efficiency of doped photocatalyst. B–TiO2 exhibited maximum photocatalytic activity by degrading 98% of DCLF in comparison to N–TiO2, which showed 95% degradation.  相似文献   

12.
This paper reports a simple and novel process for preparing nano-granular ZnxFe3−xO4 ferrite films (0 ≤ x ≤ 0.99) on Ag-coated glass substrates in DMAB-Fe(NO3)3-Zn(NO3)2 solutions. The deposition process may be applied in preparing other cations-doped spinel ferrite films. The Zn content x in the Zn x Fe3−x O4 films depends linearly on the Zn2+ ion concentration ranging from 0.0 to 1.0 mM in the aqueous solutions. With x increasing from 0 to 0.99, the lattice constant increases from 0.8399 to 0.8464 nm; and the microstructure of the films changes from the non-uniform nano-granules to the fine and uniform nano-granules of 50–60 nm in size. The saturation magnetization of the films first increases from 75 emu/g to the maximum 108 emu/g with x increasing from 0 to 0.33 and then decreases monotonously to 5 emu/g with x increasing from 0.33 to 0.99. Meanwhile, the coercive force decreases monotonously from 116 to 13 Oe.  相似文献   

13.
Tm3+ doped KF–YbF3 nanocrystals were synthesized by a hydrothermal method using oleic acid as a stabilizing agent at 190 °C. The influence of Gd3+ and Sm3+ content on the phase structure and upconversion (UC) emission of the final products was investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UC spectra. XRD analyses and TEM observations evidence that the phase and size of the as prepared Tm3+ doped KF–YbF3 nanocrystals are closely related to the Gd3+ doping content. Without Gd3+ impurity, the undoped nanocrystals crystallize in orthorhombic KYb2F7 with an average diameter of 42 nm. When the Gd3+ doping is below 10 mol%, the orthorhombic KYb2F7 nanocrystals grow up. However, with Gd3+ addition beyond about 30 mol%, the complete phase transformation from orthorhombic KYb2F7 to cubic KGdF4 occurs in the final products. Under the excitation of a 980 nm laser diode, the as prepared Tm3+ doped nanocrystals exhibit strong near-infrared UC emission at 800 nm. Particularly, the intensity of high energy UV and blue UC emissions of Tm3+ ions in Tm3+ doped KYb2F7 nanocrystals are selectively reduced compared to the NIR emission at 800 nm by co-doping a small amount of Sm3+ ions into the host matrix. Possible dynamic processes for UC emissions in Tm3+ doped nanocrystals are discussed in detail.  相似文献   

14.
《Ceramics International》2023,49(3):4342-4355
The pristine and Ni doped BaNixFe12-xO19 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) NPs have been fabricated via facile microemulsion approach and the impact of dopants was explored based dielectric, optical, structural and the photocatalytic properties of BaNixFe12-xO19 nanoparticles. X-ray diffraction and Raman study confirmed the formation of regular hexagonal geometry with space group P63/mmc with crystallite size in 32–50 nm range. Functional groups were identified using FTIR analysis. The remanence (Pr), saturation polarization (Ps) and coercivity (Hc) was explored by P-E loop analysis and the value of Pr and Ps was enhanced with the concentration of dopant. According to PL spectra, highly doped materials had a higher charge separation (e?- h+) and low recombination rate, which resulted in higher photocatalytic degradation activity of fabricated nanomaterials. The optical band gap was found to be 1.78 eV versus undoped (2.60 eV for pristine BaFe12O19). Due to polarizations, the dielectric loss, dielectric constant and tangent loss values were declined, while AC conductivity was enhanced. Photocatalytic performance of doped and undoped samples under visible right irradiation was studied for crystal violet dye. For 100 min exposure to visible light, the highly doped catalyst exhibits 97% degradation versus 60% in case of pristine this is attributed to efficient electron-hole pair separation. Furthermore, quenching effect of different scavengers indicated that hydroxyl radical had a main role, and e? or h+ played a minimal role in CV dye degradation. The enhanced properties due to doping make BaNixFe12-xO19 a potential candidate for photocatalytic applications under visible light irradiation.  相似文献   

15.
Nano CuCo2-xMxO4 (x = 0, 0.1, 0.2, M = Cr or Fe) samples were synthesized by hydrothermal method. Synchrotron x-ray diffraction data obtained for the samples were subjected to phase analysis and manifested a single-phase cubic spinel structure for Cr-doped samples, while for Fe-doped samples two phases were identified. Cation distribution and cell parameter (a) were obtained from Rietveld X-ray diffraction analysis. FTIR analysis affirmed the formation of the cubic spinel and the cation distribution obtained. The nano nature of the samples and the particle morphology were examined by high-resolution transmission electron microscope (HRTEM) with selected area electron diffraction (SAED). UV-diffuse reflectance revealed that all samples have two optical energy gaps. For all Fe doped samples, the optical band gaps decreased, while for Cr-content x = 0.1 the bandgaps increased then reduced for x = 0.2. Doped samples exhibited a blue or red shift depending on the kind and amount of the dopant ions. The PL intensity and the emitted colors depended on the kind and amount of the dopant ions. Magnetic measurements disclosed the paramagnetic nature of CuCo2O4, while a weak ferromagnetic is revealed for CuCo2-xCrxO4 and a ferromagnetic nature for CuCo2-xFexO4. Lowering the bandgap upon doping could make better mobility of lattice oxygen and enhancing the catalyst reducibility. Thus, the Cr and Fe-doped samples are expected to have better catalytic activity than the pristine one.  相似文献   

16.
The effect of concentration of Er3+ on the up‐conversion and photoluminescence properties of Gd1.00?xErxNbO4, x=0‐0.50 which has monoclinic fergusonite‐type structure as a main phase has been investigated, using a processing technique based on hydrothermal method. Under weakly basic hydrothermal condition at 240°C for 5 hours, a single phase of fergusonite‐type Gd1.00?xErxNbO4 solid solution was directly formed as nanocrystals by the substitutional incorporation of Er3+ into GdNbO4 because of the gradual and linear decrease in the lattice parameters of the monoclinic phase corresponding to the Vegard's Law. The gadolinium niobate doped with 2 mol% Er3+, Gd0.98Er0.02NbO4 after heating at 1300°C for 1 hour, which has nanocrystalline structure whose crystallite size is around 29 nm, exhibits the highest photoluminescence intensity in the green spectral region, 515‐560 nm under excitation at wavelength of 254 nm. On the other hand, the up‐converted luminescence intensity of the niobate nanocrystals becomes the maximum at the concentration of 20 mol% Er3+, Gd0.80Er0.20NbO4 under excitation at 980 nm. These results demonstrate that the material, Er3+‐doped GdNbO4 nanocrystals prepared through hydrothermal route and postheating has potential for up‐converting phosphor.  相似文献   

17.

Abstract  

A series of Zn2+ and W6+ doped tin oxide (SnO2) thin films with various dopant concentrations were prepared by spray pyrolysis deposition, and were characterized by X-ray diffraction, atomic force microscopy, contact angle, absorbance, current density–voltage (J–V) and photocurrent measurements. The results showed that W6+ doping can prevent the growth of nanosized SnO2 crystallites. When Zn2+ ions were used, the crystallite sizes were proved to be similar with the undoped sample due to the similar ionic radius between Zn2+ and Sn4+. Regardless of the dopant ions’ type or concentration, the surface energy has a predominant dispersive component. By using Zn2+ dopant ions it is possible to decrease the band gap value (3.35 eV) and to increase the electrical conductivity. Photocatalytic experiments with methylene blue demonstrated that with zinc doped SnO2 films photodegradation efficiencies close to 30% can be reached.  相似文献   

18.
Sputtering with copper indium gallium selenide (CIGS) ceramic targets could produce smooth CIGS thin films that are preferred for preparing two-terminal tandem devices. However, grain sizes prepared in this way are small and device efficiency was low. To increase the grain size, in this report, an Ag layer was pre-sputtered beneath CIGS. The Ag doping layer increased the grain size and improved the crystalline alignment. Consequently, the Ag-doped films exhibited improved charge mobility. From X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy characterizations, we obtained an optimized Ag thickness of 15 nm. Short-circuit current density (JSC), open-circuit voltage (VOC), and fill factor (FF) were all improved after doping with 15-nm Ag. Increasing the annealing temperature from 550 °C to 575 °C, the grains was enlarged further, with the power conversion efficiency (PCE) increasing to 14.33% and VOC to 545 mV. Upon the smooth CIGS film, a thin conformal perovskite layer was fabricated without polishing. This work demonstrates a simple way to fabricate smooth and highly-crystalline CIGS films that can be used for tandem solar cells.  相似文献   

19.
Bismuth-layer-structured (Ba1−x Mn x )Bi4Ti4O15 (0.0 ≤ x ≤ 0.8) ceramics were prepared by a Sol–Gel method. The effects of the amount of Mn-doped on the phase structure, the dielectric as well as piezoelectric properties of BaBi4Ti4O15 ceramics were studied. The X-ray diffraction results revealed that the introduction of Mn resulting in distortion of lattice, which contributes to the crystallization of the layered structure grains. The densification, dielectric and piezoelectric properties of the (Ba1−x Mn x )Bi4Ti4O15 ceramics were significantly promoted by the Mn substitution of Ba. When the value of doping amount Mn is 0.4, the (Ba0.6Mn0.4)Bi4Ti4O15 ceramic exhibited a high piezoelectric constant (d 33 = 7.5 pC/N), a big relatively dielectric constant (ε r  = 764.26) and a small dielectric loss (tanδ = 0.0124).  相似文献   

20.
Pure anatase TiO2 photocatalyst with different Ag contents was prepared via a controlled and energy efficient microwave assisted method. The prepared material was further characterized by several analytical techniques like X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), surface area measurement (BET), Fourier transform-infrared spectroscopy (FT-IR), diffused reflectance spectroscopy (DRS), and thermogravimetric–differential thermal analysis (TGA–DTA). A 10 nm average crystallite size with nano-crystals of pseudo-cube like morphology was obtained for optimal (0.25 mol%) Ag doped TiO2. The present research work is mainly focused on the enhancement of degradation efficiency of methyl orange (MO) by doping of Ag in TiO2 matrix using UV light (365 nm). A 99.5% photodegradation efficiency of methyl orange was achieved by utilizing 0.25 mol% Ag doped TiO2 (1 g/dm3) at pH=3 within 70 min. Recyclability of photocatalyst was also studied, with the material being found to be stable up to five runs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号