首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Melanoma accounts for the majority of skin cancer deaths. About 50% of all melanomas are associated with BRAF mutations. BRAF mutations are classified into three classes with regard to dependency on RAF dimerization and RAS signaling. The most frequently occurring class I BRAF V600 mutations are sensitive to vemurafenib whereas class II and class III mutants, non-V600 BRAF mutants are resistant to vemurafenib. Herein we report six pyrimido[4,5-d]pyrimidin-2-one derivatives possessing highly potent anti-proliferative activities on melanoma cells harboring BRAF class I/II/III mutants. Novel and most potent derivative, SIJ1777, possesses not only two-digit nanomolar potency but also 2 to 14-fold enhanced anti-proliferative activities compared with reference compound, GNF-7 against melanoma cells (SK-MEL-2, SK-MEL-28, A375, WM3670, WM3629). Moreover, SIJ1777 substantially inhibits the activation of MEK, ERK, and AKT and remarkably induces apoptosis and significantly blocks migration, invasion, and anchorage-independent growth of melanoma cells harboring BRAF class I/II/II mutations while both vemurafenib and PLX8394 have little to no effects on melanoma cells expressing BRAF class II/III mutations. Taken together, our six GNF-7 derivatives exhibit highly potent activities against melanoma cells harboring class I/II/III BRAF mutations compared with vemurafenib as well as PLX8394.  相似文献   

2.
Shikonin is an anthraquinone derivative extracted from the root of lithospermum. Shikonin is traditionally used in the treatment of inflammatory and infectious diseases such as hepatitis. Shikonin also inhibits proliferation and induces apoptosis in various tumors. However, the effect of shikonin on gliomas has not been fully elucidated. In the present study, we aimed to investigate the effects of shikonin on the migration and invasion of human glioblastoma cells as well as the underlying mechanisms. U87 and U251 human glioblastoma cells were treated with shikonin at 2.5, 5, and 7.5 μmol/L and cell viability, migration and invasiveness were assessed with CCK8, scratch wound healing, in vitro Transwell migration, and invasion assays. The expression and activity of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) and the expression of phosphorylated β-catenin (p-β-catenin) and phosphorylated PI3K/Akt were also checked. Results showed that shikonin significantly inhibited the cell proliferation, migration, invasion, and expression of MMP-2 and MMP-9 in U87 and U251 cells. The expression of p-β-catenin showed contrary trends in two cell lines. It was significantly inhibited in U87 cells and promoted in U251 cells. Results in this work indicated that shikonin displayed an inhibitory effect on the migration and invasion of glioma cells by inhibiting the expression and activity of MMP-2 and -9. In addition, shikonin also inhibited the expression of p-PI3K and p-Akt to attenuate cell migration and invasion and MMP-2 and MMP-9 expression in both cell lines, which could be reversed by the PI3K/Akt pathway agonist, insulin-like growth factor-1 (IGF-1).  相似文献   

3.
Resveratrol (RSV) is a natural compound that displays several pharmacological properties, including anti-cancer actions. However, its clinical application is limited because of its low solubility and bioavailability. Here, the antiproliferative and anti-inflammatory activity of a series of phenylacetamide RSV derivatives has been evaluated in several cancer cell lines. These derivatives contain a monosubstituted aromatic ring that could mimic the RSV phenolic nucleus and a longer flexible chain that could confer a better stability and bioavailability than RSV. Using MTT assay, we demonstrated that most derivatives exerted antiproliferative effects in almost all of the cancer cell lines tested. Among them, derivative 2, that showed greater bioavailability than RSV, was the most active, particularly against estrogen receptor positive (ER+) MCF7 and estrogen receptor negative (ER-) MDA-MB231 breast cancer cell lines. Moreover, we demonstrated that these derivatives, particularly derivative 2, were able to inhibit NO and ROS synthesis and PGE2 secretion in lipopolysaccharide (LPS)-activated U937 human monocytic cells (derived from a histiocytoma). In order to define the molecular mechanisms underlying the antiproliferative effects of derivative 2, we found that it determined cell cycle arrest at the G1 phase, modified the expression of cell cycle regulatory proteins, and ultimately triggered apoptotic cell death in both breast cancer cell lines. Taken together, these results highlight the studied RSV derivatives, particularly derivative 2, as promising tools for the development of new and more bioavailable derivatives useful in the treatment of breast cancer.  相似文献   

4.
Curcumin and curcuminoids have been discussed frequently due to their promising functional groups (such as scaffolds of α,β-unsaturated β-diketone, α,β-unsaturated ketone and β′-hydroxy-α,β-unsaturated ketone connected with aromatic rings on both sides) that play an important role in various bioactivities, including antioxidant, anti-inflammatory, anti-proliferation and anticancer activity. A series of novel curcuminoid derivatives (a total of 55 new compounds) and three reference compounds were synthesized with good yields using three-step organic synthesis. The anti-proliferative activities of curcumin derivatives were examined for six human cancer cell lines: HeLaS3, KBvin, MCF-7, HepG2, NCI-H460 and NCI-H460/MX20. Compared to the IC50 values of all the synthesized derivatives, most α,β-unsaturated ketones displayed potent anti-proliferative effects against all six human cancer cell lines, whereas β′-hydroxy-α,β-unsaturated ketones and α,β-unsaturated β-diketones presented moderate anti-proliferative effects. Two potent curcuminoid derivatives were found among all the novel derivatives and reference compounds: (E)-5-hydroxy-7-phenyl-1-(3,4,5-trimethoxyphenyl)hept-1-en-3-one (compound 3) and (1E,4E)-1,7-bis(3,4,5-trimethoxyphenyl)hepta-1,4-dien-3-one (compound MD12a). These were selected for further analysis after the evaluation of their anti-proliferative effects against all human cancer cell lines. The results of apoptosis assays revealed that the number of dead cells was increased in early apoptosis and late apoptosis, while cell proliferation was also decreased after applying various concentrations of (E)-5-hydroxy-7-phenyl-1-(3,4,5-trimethoxyphenyl)hept-1-en-3-one (compound 3) and (1E,4E)-1,7-bis(3,4,5-trimethoxyphenyl)hepta-1,4-dien-3-one (compound MD12a) to MCF-7 and HpeG2 cancer cells. Analysis of the gene expression arrays showed that three genes (GADD45B, SESN2 and BBC3) were correlated with the p53 pathway. From the quantitative PCR analysis, it was seen that (1E,4E)-1,7-bis(3,4,5-trimethoxyphenyl)hepta-1,4-dien-3-one (compound MD12a) effectively induced the up-regulated expression of GADD45B, leading to the suppression of MCF-7 cancer cell formation and cell death. Molecular docking analysis was used to predict and sketch the interactions of the GADD45B-α,β-unsaturated ketone complex for help in drug design.  相似文献   

5.
In this study, detailed information on hepatocellular carcinoma (HCC) cells (HepG-2, SMMC-7721, and HuH-7) and normal human liver cell L02 treated by ferrocene derivatives (compounds 1, 2 and 3) is provided. The cell viability assay showed that compound 1 presented the most potent and selective anti-HCC activity. Further mechanism study indicated that the proliferation inhibition effect of compound 1 was associated with the cycle arrest at the G0/G1 phase and downregulation of cyclin D1/CDK4. Moreover, compound 1 could induce apoptosis in HCC cells by loss of mitochondrial membrane potential (ΔΨm), accumulation of reactive oxygen species (ROS), decrease in Bcl-2, increase in BAX and Bad, translocation of Cytochrome c, activation of Caspase-9, -3, and cleavage of PARP. These results indicated that compound 1 would be a promising candidate against HCC through G0/G1 cell cycle arrest-related proliferation inhibition and mitochondrial pathway-dependent apoptosis.  相似文献   

6.
Olivacine and ellipticine are model anticancer drugs acting as topoisomerase II inhibitors. Here, we present investigations performed on four olivacine derivatives in light of their antitumor activity. The aim of this study was to identify the best antitumor compound among the four tested olivacine derivatives. The study was performed using CCRF/CEM and MCF-7 cell lines. Comet assay, polarography, inhibition of topoisomerase II activity, histone acetylation, and molecular docking studies were performed. Each tested compound displayed interaction with DNA and topoisomerase II, but did not cause histone acetylation. Compound 2 (9-methoxy-5,6-dimethyl-1-({[1-hydroxy-2-(hydroxymethyl)butan-2-yl]amino}methyl)-6H-pyrido[4,3-b]carbazole) was found to be the best candidate as an anticancer drug because it had the highest affinity for topoisomerase II and caused the least genotoxic damage in cells.  相似文献   

7.
Sulfonylguanidines are interesting bioactive compounds with a broad range of applications in the treatment of different pathologies. 2-Aminobenzazole-based structures are well employed in the development of new anticancer drugs. Two series of novel N-benzazol-2-yl-N′-sulfonyl guanidine derivatives were synthesized with the sulfonylguanidine in either an extra- or intracyclic frame. They were evaluated for their antiproliferative activity against malignant melanoma tumor cells, thus allowing structure-activity relationships to be defined. Additionally, NCI-60 screening was performed for the best analogue to study its efficiency against a panel of other cancer cell lines. The stability profile of this promising compound was then validated. During the synthetic process, an unexpected new deamidination of the sulfonylguanidine towards sulfonamide function was also identified.  相似文献   

8.
With the aim of discovering new anticancer agents, we have designed and synthesized novel α-aminophosphonate derivatives containing a 2-oxoquinoline structure using a convenient one-pot three-component method. The newly synthesized compounds were evaluated for antitumor activities against the A549 (human lung adenocarcinoma cell), HeLa (human cervical carcinoma cell), MCF-7 (human breast cancer cell), and U2OS (human osteosarcoma cell) cancer cell lines in vitro, employing a standard 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The results of pharmacological screening indicated that many compounds exhibited moderate to high levels of antitumor activities against the tested cancer cell lines and that most compounds showed more potent inhibitory activities comparable to 5-fluorouracil (5-FU) which was used as a positive control. The mechanism of representative compound 4u (diethyl((2-oxo-1,2-dihydroquinolin-3-yl)(phenyl-amino)methyl)phosphonate) indicated that the compound mainly arrested HeLa cells in S and G2 stages and was accompanied by apoptosis in HeLa cells. This action was confirmed by acridine orange/ethidium bromide staining, Hoechst 33342 staining, and flow cytometry.  相似文献   

9.
10.
In traditional Chinese medicine, shikonin and its derivatives, has been used in East Asia for several years for the prevention and treatment of several diseases, including cancer. We previously identified that β,β-dimethylacrylshikonin (DA) could inhibit hepatocellular carcinoma growth. In the present study, we investigated the inhibitory effects of DA on human colorectal cancer (CRC) cell line HCT-116 in vitro and in vivo. A viability assay showed that DA could inhibit tumor cell growth in a time- and dose-dependent manner. Flow cytometry showed that DA blocks the cell cycle at G(0)/G(1) phase. Western blotting results demonstrated that the induction of apoptosis by DA correlated with the induction of pro-apoptotic proteins Bax, and Bid, and a decrease in the expression of anti-apoptotic proteins Bcl-2 and Bcl-xl. Furthermore, treatment of HCT-116 bearing nude mice with DA significantly retarded the growth of xenografts. Consistent with the results in vitro, the DA-mediated suppression of HCT-116 xenografts correlated with Bax and Bcl-2. Taken together, these results suggest that DA could be a novel and promising approach to the treatment of CRC.  相似文献   

11.
A series of highly functionalized pyrazole derivatives has been prepared by a one-pot, versatile and regioselective procedure. Pyrazoles 1 – 29 were tested in cell-based assay to assess their antiproliferative activity against a panel of tumour cells. Additionally, the cytotoxicity of prepared compounds was evaluated against normal human fibroblasts. The antiproliferative activity of the synthesized molecules emerged to be affected by the nature of the substituents of the pyrazole scaffold and derivatives 21 – 23 proved to inhibit the growth of melanoma and cervical cancer cells. Compound 23 was identified as the most active derivative and docking simulations predicted its ability to interact with estrogen receptors.  相似文献   

12.
To minimize the cytotoxicity of shikonin and alkannin that arises through the generation of reactive oxygen species (ROS) and alkylation of the naphthazarin ring, two series of novel core‐scaffold‐modified shikonin and alkannin derivatives were designed. These derivatives, which differ in their configurational and positional isomerism (R‐, S‐, and 2‐ and 6‐isomers) were synthesized in high enantiomeric excess (>99 % ee). The selectivity of the dimethylated derivatives was significantly higher than the parent shikonin in vitro, but some side effects were still observed in vivo. Surprisingly, the dimethylated diacetyl derivatives with poor anticancer activity in vitro showed tumor‐inhibiting effects similar to paclitaxel without any toxicity in vivo. The anticancer activity of these derivatives is in agreement with their low ROS generation and alkylating capacity, emphasizing their potential as prodrugs. This strategy provides means to address the nonspecific cytotoxicity of naphthazarin analogues toward normal cells.  相似文献   

13.
A series of novel mono and bishydrazones each bearing a 2-oxindole moiety along with substituted phenylaminopropanamide, pyrrolidin-2-one, benzimidazole, diphenylmethane, or diphenylamine fragments were synthesized, and their anticancer activities were tested by MTT assay against human melanoma A375 and colon adenocarcinoma HT-29 cell lines. In general, the synthesized compounds were more cytotoxic against HT-29 than A375. 3-((4-Methoxyphenyl)(3-oxo-3-(2-(2-oxoindolin-3-ylidene)hydrazinyl)propyl)amino)-N′-(2-oxoindolin-3-ylidene)propanehydrazide and (N′,N‴)-1,1′-(methylenebis(4,1-phenylene))bis(5-oxo-N′-(2-oxoindolin-3-ylidene)pyrrolidine-3-carbohydrazide) were identified as the most active compounds against HT-29 in 2D and 3D cell cultures. The same compounds showed the highest antioxidant activity among the synthesized compounds screened by ferric reducing antioxidant power assay (FRAP). Their antioxidant activity is on par with that of a well-known antioxidant ascorbic acid.  相似文献   

14.
A series of A-ring modified oleanolic and ursolic acid derivatives including C28 amides (3-oxo-C2-nicotinoylidene/furfurylidene, 3β-hydroxy-C2-nicotinoylidene, 3β-nicotinoyloxy-, 2-cyano-3,4-seco-4(23)-ene, indolo-, lactame and azepane) were synthesized and screened for their cytotoxic activity against the NCI-60 cancer cell line panel. The results of the first assay of thirty-two tested compounds showed that eleven derivatives exhibited cytotoxicity against cancer cells, and six of them were selected for complete dose–response studies. A systematic study of local SARs has been carried out by comparative analysis of potency distributions and similarity relationships among the synthesized compounds using network-like similarity graphs. Among the oleanane type triterpenoids, C2-[4-pyridinylidene]-oleanonic C28-morpholinyl amide exhibited sub-micromolar potencies against 15 different tumor cell lines and revealed particular selectivity for non-small cell lung cancer (HOP-92) with a GI50 value of 0.0347 μM. On the other hand, superior results were observed for C2-[3-pyridinylidene]-ursonic N-methyl-piperazinyl amide 29, which exhibited a broad-spectrum inhibition activity with GI50 < 1 μM against 33 tumor cell lines and <2 μM against all 60 cell lines. This compound has been further evaluated for cell cycle analysis to decipher the mechanism of action. The data indicate that compound 29 could exhibit both cytostatic and cytotoxic activity, depending on the cell line evaluated. The cytostatic activity appears to be determined by induction of the cell cycle arrest at the S (MCF-7, SH-SY5Y cells) or G0/G1 phases (A549 cells), whereas cytotoxicity of the compound against normal cells is nonspecific and arises from apoptosis without significant alterations in cell cycle distribution (HEK293 cells). Our results suggest that the antiproliferative effect of compound 29 is mediated through ROS-triggered apoptosis that involves mitochondrial membrane potential depolarization and caspase activation.  相似文献   

15.
Since long-term use of classic NSAIDs can cause severe side effects related mainly to the gastroduodenal tract, discovery of novel cyclooxygenase inhibitors with a safe gastric profile still remains a crucial challenge. Based on the most recent literature data and previous own studies, we decided to modify the structure of already reported 1,3,4-oxadiazole based derivatives of pyrrolo[3,4-d]pyridazinone in order to obtain effective COX inhibitors. Herein we present the synthesis, biological evaluation and molecular docking studies of 12 novel compounds with disubstituted arylpiperazine pharmacophore linked in a different way with 1,3,4-oxadiazole ring. None of the obtained molecules show cytotoxicity on NHDF and THP-1 cell lines and, therefore, all were qualified for further investigation. In vitro cyclooxygenase inhibition assay revealed almost equal activity of new derivatives towards both COX-1 and COX-2 isoenzymes. Moreover, all compounds inhibit COX-2 isoform better than Meloxicam which was used as reference. Anti-inflammatory activity was confirmed in biological assays according to which title molecules are able to reduce induced inflammation within cells. Molecular docking studies were performed to describe the binding mode of new structures to cyclooxygenase. Investigated derivatives take place in the active site of COX, very similar to Meloxicam. For some compounds, promising druglikeness was calculated using in silico predictions.  相似文献   

16.
The design and synthesis of heparin mimetics with high anticancer activity but no anticoagulant activity is an important task in medicinal chemistry. Herein, we present the efficient synthesis of five Glc-GlcA-Glc-sequenced and one Glc-IdoA-Glc-sequenced non-glycosaminoglycan, heparin-related trisaccharides with various sulfation/sulfonylation and methylation patterns. The cell growth inhibitory effects of the compounds were tested against four cancerous human cell lines and two non-cancerous cell lines. Two d -glucuronate-containing tetra-O-sulfated, partially methylated trisaccharides displayed remarkable and selective inhibitory effects on the growth of ovary carcinoma (A2780) and melanoma (WM35) cells. Methyl substituents on the glucuronide unit proved to be detrimental, whereas acetyl substituents were beneficial to the cytostatic activity of the sulfated derivatives.  相似文献   

17.
A series of 2-aminothiazole derivatives were designed, synthesized on the basis of bioisosterism strategy and evaluated for their CHK1 inhibitory activity. Most of them exhibited potent CHK1 inhibition, and excellent antiproliferative activity against MV-4-11 and Z-138 cell lines. Systematic structure-activity relationship (SAR) efforts led to the discovery of a promising compound 8 n , which showed potent CHK1 inhibitory activity with IC50 value of 4.25±0.10 nM, excellent antiproliferative activity against MV-4-11 and Z-138 cells with IC50 value of 42.10±5.77 nM and 24.16±6.67 nM, respectively, as well as moderate oral exposure (AUC(0−t)=1076.25 h ⋅ ng/mL) in mice. Additionally, treatment of MV-4-11 cells with compound 8 n for 2 h led to robust inhibition of CHK1 autophosphorylation on serine 296. Furthermore, kinase selectivity assay revealed that 8 n displayed acceptable selectivity toward 15 kinases. These results demonstrated that compound 8 n may be a promising potential anticancer agent for further development.  相似文献   

18.
In an effort to discover potent anticancer agents, 2-thiouracil-5-sulfonamides derivatives were designed and synthesized. The cytotoxic activity of all synthesized compounds was investigated against four human cancer cell lines viz A-2780 (ovarian), HT-29 (colon), MCF-7 (breast), and HepG2 (liver). Compounds 6b,d–g, and 7b showed promising anticancer activity and significant inhibition of CDK2A. Moreover, they were all safe when tested on WI38 normal cells with high selectivity index for cancer cells. Flow cytometric analysis for the most active compound 6e displayed induction of cell growth arrest at G1/S phase (A-2780 cells), S phase (HT-29 and MCF-7 cells), and G2/M phase (HepG2 cells) and stimulated the apoptotic death of all cancer cells. Moreover, 6e was able to cause cycle arrest indirectly through enhanced expression of cell cycle inhibitors p21 and p27. Finally, molecular docking of compound 6e endorsed its proper binding to CDK2A, which clarifies its potent anticancer activity.  相似文献   

19.
A series of novel C4-C7-tethered biscoumarin derivatives (12a–e) linked through piperazine moiety was designed, synthesized, and evaluated biological/therapeutic potential. Biscoumarin 12d was found to be the most effective inhibitor of both acetylcholinesterase (AChE, IC50 = 6.30 µM) and butyrylcholinesterase (BChE, IC50 = 49 µM). Detailed molecular modelling studies compared the accommodation of ensaculin (well-established coumarin derivative tested in phase I of clinical trials) and 12d in the human recombinant AChE (hAChE) active site. The ability of novel compounds to cross the blood–brain barrier (BBB) was predicted with a positive outcome for compound 12e. The antiproliferative effects of newly synthesized biscoumarin derivatives were tested in vitro on human lung carcinoma cell line (A549) and normal colon fibroblast cell line (CCD-18Co). The effect of derivatives on cell proliferation was evaluated by MTT assay, quantification of cell numbers and viability, colony-forming assay, analysis of cell cycle distribution and mitotic activity. Intracellular localization of used derivatives in A549 cells was confirmed by confocal microscopy. Derivatives 12d and 12e showed significant antiproliferative activity in A549 cancer cells without a significant effect on normal CCD-18Co cells. The inhibition of hAChE/human recombinant BChE (hBChE), the antiproliferative activity on cancer cells, and the ability to cross the BBB suggest the high potential of biscoumarin derivatives. Beside the treatment of cancer, 12e might be applicable against disorders such as schizophrenia, and 12d could serve future development as therapeutic agents in the prevention and/or treatment of Alzheimer’s disease.  相似文献   

20.
A new series of hybrid compounds with tropinone and thiazole rings in the structure was designed and synthesized as potential anticancer agents. They were tested against human multiple myeloma (RPMI 8226), lung carcinoma (A549), breast adenocarcinoma (MDA-MB-231), and mouse skin melanoma (B16-F10) cell lines. Toxicity was tested on human normal skin fibroblasts (HSF) and normal colon fibroblasts (CCD-18Co). The growth inhibition mechanism of the most active derivative was analyzed through investigation of its effect on the distribution of cell cycle phases and ability to induce apoptosis and necrosis in RPMI 8226 and A549 cancer cells. The tyrosinase inhibitory potential was assessed, followed by molecular docking studies. Compounds 3a–3h show high anticancer activity against MDA-MB-231 and B16-F10 cell lines with IC50 values of 1.51–3.03 µM. Moreover, the cytotoxic activity of the investigated compounds against HSF and CCD-18Co cells was 8–70 times lower than against the cancer cells or no toxicity was shown in our tests, with derivative 3a being particularly successful. The mechanism of action of compound 3a in RPMI 8226 cell was shown to be through induction of cell death through apoptosis. The derivatives show ability to inhibit the tyrosinase activity with a mixed mechanism of inhibition. The final molecular docking results showed for IC50 distinct correlation with experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号